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ABSTRACT 

A generalized matrix-decomposition processor is designed and 
implemented, which supports QR decomposition (QRD), 
eigenvalue decomposition (EVD), and geometric-mean 
decomposition (GMD), to accelerate computations in MIMO 
precoding/beamforming systems. The processor adopts memory-
based architecture with 16 processing elements (PEs) each 
consisting of one CORDIC module. An improved GMD algorithm 
is proposed, which reduces 13.2% complexity and can be 
implemented by homogeneous CORDIC operations. The EVD 
adopts the Rayleigh quotient shift and deflation technique to 
accelerate convergence. The basis computations can be 
accomplished by mirrored operations during channel matrix 
decomposition. From the implementation results, the generalized 
processor achieves decomposition throughput of 10M, 0.99M, 
2.96M matrixes per second for 4 × 4  complex QRD, EVD and 
GMD. 
 

Index Terms — MIMO precoding, QRD, EVD, SVD, GMD. 

1. INTRODUCTION 

Multiple-input multiple-output (MIMO) techniques are regarded as 
one of the promising solutions to bring capacity gain, diversity 
gain and beamforming gain. Recent wireless communication 
systems, such as 3GPP Long-term evolution (LTE)/LTE-A and 
IEEE 802.11n/ac, often incorporate open-loop MIMO and close-
loop MIMO to exploit these gains so that the transmission 
efficiency in terms of either spectral efficiency or power efficiency 
can be enhanced. 

Matrix decomposition is often required in close-loop MIMO 
systems. QRD can triangularize the channel matrix [1], and thus 
with the help of Tomlinson-Harashima precoding (THP) at the 
transmitter or successive interference cancellation (SIC) at the 
receiver, the inter-antenna-interference (IAI) can be eliminated.  
Singular value decomposition (SVD) is also an essential technique 
to decompose the spatially coupled channels into parallel 
subchannels, which is adopted in IEEE 802.11n/ac [2]. However, 
the subchannel with the worst channel gain usually deteriorates the 
system bit-error-rate performance. Hence, the GMD then has been 
proposed for the transceiver design [3], which results in identical 
signal-to-noise ratios for all the subchannels. The EVD is 
employed for searching the subspace to achieve interference 
alignment [4] or to maximize signal-to-interference-and-noise ratio 
[5]. Consequently, it is clear that a generalized matrix-
decomposition processor will be a key component for supporting 
advanced MIMO precoding or beamforming techniques. 

Dedicated hardware implementations related with matrix 
decomposition for MIMO systems have been proposed in [6]-[10]. 
In [6], QRD for 8 × 8  and 4 × 4  MIMO precoding is designed 

with the sorting capability. In [7] and [8], high-throughput and 
pipelined architecture is developed for 4 × 4 GMD. The authors 
also show that bidiagonalization plus successive 2 × 2 SVD and 2 × 2 GMD can be more efficient in computation than the full 
SVD-based approach, which needs iterative SVD preprocessing. In 
[8], a divide-and-conquer approach is proposed to further reduce 
the complexity and to increase the parallelism for throughput 
enhancement. A generalized triangular decomposition (GTD) 
processor is designed in [9] based on systolic array for computing 1 × 1 to 8 × 8 GTD. SVD pre-processing is adopted and thus the 
architecture also supports SVD. In [10], 4 × 4 SVD is realized by a 
pipelined architecture for high throughput applications.  An eigen-
solver is implemented in a semi-systolic array in [11]. It is worth 
noting that all these implementations use Givens rotation algorithm 
computed by coordinated rotation digital computer (CORDIC).  

In this paper, the architecture of a generalized matrix-
decomposition processor is designed. The processor aims to 
compute the results of QRD, EVD, and GMD for accelerating 
signal processing in base-station supporting various MIMO 
precoding techniques. Since SVD can be calculated by EVD, it 
implies that our processor also supports SVD-based precoding. To 
offer configurability and flexibility, the memory-based architecture 
is used instead of pipelined architecture. The processing element 
(PE) is composed of the CORDIC module that is configured for 
different operations, such as circular rotation, circular vectoring, 
hyperbolic rotation, etc. To achieve efficient computation, 
bidiagonalization and Hessenburg reduction are adopted for GMD 
and EVD in the first phase. Then, a new parallel processing 
approach for GMD processing is proposed and we will show the 
reduction in computational complexity as opposed to the prior 
method.   The Rayleigh quotient shift and deflation are adopted for 
EVD to accelerate the convergence.  Floating-point representation 
is used to cover the wide dynamic range of different matrix 
decomposition schemes. Implementation results and comparisons 
are provided to show the capability of our matrix-decomposition 
processor. 
 

2. MATRIX DECOMPOSITION ALGORITHMS 

In MIMO systems, received signal ܡ ∈ ℂே×ଵ of ܰ receive antennas 
can be expressed as ܡ = ܠ۶۴ +  (1)                                ܖ
where ܠ ∈ ℂே×ଵ is the transmitted signal from ܰ transmit antennas; ۶ ∈ ℂே×ே  is the MIMO channel response; ܖ is the noise vector. 
The precoding matrix ۴ of size ܰ × ܰ can be obtained by various 
matrix decomposition schemes depending on the requirements. 

 For QRD, ۶ு = ொோ.  ۴܀ொோۿ =  .ொோۿ

 For SVD, ۶ = ࡴௌ௏஽܄ௌ௏஽઱ௌ௏஽܃ . ۴ =  .ௌ௏஽܄

 For GMD, ۶ = ெ஽ுீ۾ெ஽ீ܀ெ஽ீۿ .  ۴ =  .ெ஽ீ۾
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 For EVD, ۱ = ࡴா௏஽܃ா௏஽઩ா௏஽܃ , where ۱  is the covariance 
matrix related with signal, interference, and noise. 

In these decomposition schemes, matrixes ܀ொோ  and ீ܀ெ஽  are 
upper triangular; matrixes ઱ௌ௏஽  and ઩ா௏஽  are diagonal; matrixes ۿொோ ௌ௏஽܃ , ௌ௏஽܄ , ெ஽ீۿ , ெ஽ீ۾ , ா௏஽܃  ,  are all unitary. All the 
decompositions mentioned above can be accomplished by Givens 
rotation algorithms, and thus our general matrix decomposition 
processor then utilizes the CORDIC-based Givens rotations to 
support these matrix decompositions. The QRD algorithm can be 
seen in [12]. Here, we provide the algorithms for GMD and EVD. 

2.1. GMD 

Implementations of GMD/GTD have been studied in [7]-[9]. In [9], 
the SVD of the input matrix is first obtained, and then the 
triangularization procedure follows. Parallel operations can be 
executed in the triangularization procedure given the known 
diagonal elements for acceleration. In [7] and [8], the authors show 
that bidiagonalization procedure can be adopted for pre-processing 
to replace the iterative singular-value diagonalization procedure 
and significant computation complexity can be saved. However, 
unknown geometric mean results in a series of equalization steps. 
A recursive conversion is adopted in [7] and a divide-and-conquer 
method is used in [8]. In light of the above, our processor 
combines the advantages of the prior implementations and designs 
two-phase operation for GMD. In the first phase, the 
bidiagonalization pre-processing is employed. Meanwhile, the 
geometric mean is derived. In the second phase, geometric-mean 
(GM) equalization is performed. Thus, the iterative singular-value 
diagonalization and recursive equalization operations can be 
avoided. The steps are summarized in algorithm 1. 

Assume that after bidiagonalization ۶ =  ஻ு,                                    (2)۾஻۰ۿ

where ۿ஻  and ۾஻  are unitary matrixes and ۰  is a bidiagonal 
matrix. Because ۶ = ெ஽ுீ۾ெ஽ீ܀ெ஽ீۿ , we have ݀݁ீۿ)ݐெ஽ீ܀ெ஽ீ۾ெ஽ு ) = (ெ஽ீ܀)ݐ݁݀ = ∏ ୀ૙࢏૚ିࡺ௜,௜ݎ = ݎீ ெ஽ே   = (஻ு۾஻۰ۿ)ݐ݁݀ = (۰)ݐ݁݀ = ∏ ܾ௜,௜ିࡺ૚࢏ୀ૙ ,             (3) 

where ݎ௜,௜  and ܾ௜,௜  are the ݅ th diagonal element of ீ܀ெ஽ and ۰  , 
respectively. Thus, we can obtain the geometric mean as  ீݎ ெ஽ = ට∏ ܾ௜,௜ேିଵ௜ୀ଴ಿ

.                                     (4) 

Eq. (4) can be computed by CORDIC in hyperbolic mode 
recursively. Let ߶ேା௜ = ܾ௜,௜. Define 

 ߶௜ = ඥ߶ଶ௜߶ଶ௜ାଵ = ଵଶඥ(߶ଶ௜ + ߶ଶ௜ାଵ)ଶ − (߶ଶ௜ − ߶ଶ௜ାଵ)ଶ    (5) 

After recursive calculations from ߶ସ~߶଻ for logଶ(ܰ) times, ߶ଵ ݎீ= ெ஽. 
The 2 × 2  diagonal submatrix ۰ଶ௜ିଵ:ଶ௜,ଶ௜ିଵ:ଶ௜  is processed by 2 × 2 SVD first in the second phase. Then, GM equalization for 

the diagonal terms is performed. There are four cases depending on 
the values of the diagonal terms and ீݎ ெ஽. The top-down operation 
performs GM equalization from upper-left corner sequentially 
while the bottom-up mode equalizes the diagonal term from the 
lower-right corner sequentially. The swap mode is applied to the 
two center rows as show in Fig. 1 until that the 2 × 2  corner 
submatrix contains two elements satisfying 

 min	(઱ଶ௜ିଵ,ଶ௜ିଵ, ઱ଶ௜,ଶ௜) ≤ ݎீ ெ஽ ≤ max	(઱ଶ௜ିଵ,ଶ௜ିଵ, ઱ଶ௜,ଶ௜)     
(6) 

Algorithm 1: GMD algorithm by Givens rotation 
Given matrix ۶ ∈ ℂସ×ସ  
        // First phase 
 Bidiagonalization(۶)=[஻ு۾ ,஻, ۰ۿ] .1
ݎீ] .2 ெ஽]=GeometricMean(diag(۰)) 
܃ .3 = ࡴ܄ ,஻ۿ =  ஻ு۾

// Second phase 
4. for ݅ = 1: 2    
5.        [۵௟,௜, ۵୰,௜]=SVD2×2(۰ଶ௜ିଵ:ଶ௜,ଶ௜ିଵ:ଶ௜) 
6.         ઱ଶ௜ିଵ:ଶ௜,௦௧௔௥௧:௘௡ௗ = ۵௟,௜۰ଶ௜ିଵ:ଶ௜,௦௧௔௥௧:௘௡ௗ 
7. 									઱௦௧௔௥௧:௘௡ௗ,ଶ௜ିଵ:ଶ௜ = ۰௦௧௔௥௧:௘௡ௗ,ଶ௜ିଵ:ଶ௜۵௥,௜ 
௦௧௔௥௧:௘௡ௗ,ଶ௜ିଵ:ଶ௜܃         .8 = ௦௧௔௥௧:௘௡ௗ,ଶ௜ିଵ:ଶ௜۵௟,௜ு܃ , 
ଶ௜ିଵ:ଶ௜,௦௧௔௥௧:௘௡ௗ܄         .9 = ۵௟,௜ு  ଶ௜ିଵ:ଶ௜,௦௧௔௥௧:௘௡ௗ܄

end  
    // GM equalization 

10. if ( min	(઱ଵ,ଵ, ઱ଶ,ଶ) ≤ ݎீ ெ஽ ≤ max	(઱ଵ,ଵ, ઱ଶ,ଶ) ) && 
(max	(઱ଷ,ଷ, ઱ସ,ସ) ≤ ݎீ ெ஽)//Case 1 

,ெ஽ீۿ]      .11 ,ெ஽ீ܀ ெ஽ுீ۾ ]=TopDown (,܃	ࡴ܄, ઱) 
12. else if ( min	(઱ଷ,ଷ, ઱ସ,ସ) ≤ ݎீ ெ஽ ≤ max	(઱ଷ,ଷ, ઱ସ,ସ) ) && 

(min	(઱ଵ,ଵ, ઱ଶ,ଶ) ≥ ݎீ ெ஽)//Case 2 
,ெ஽ீۿ]      .13 ,ெ஽ீ܀ ெ஽ுீ۾ ]=BottomUp(,܃	ࡴ܄, ઱) 
14. else if (max	(઱ଷ,ଷ, ઱ସ,ସ) ≤ ݎீ ெ஽ ≤ min	(઱ଵ,ଵ, ઱ଶ,ଶ))//Case 3 
,۲ۻ۵ۿ]      .15 ,ெ஽ீ܀ ெ஽ுீ۾ ]=SwapThenParallel (,܃	ࡴ܄, ઱) 
16. else //Case 4 
,۲ۻ۵ۿ]      .17 ,ெ஽ீ܀ ெ஽ுீ۾ ]=Parallel (,܃	ࡴ܄, ઱) 

end 

 
Fig. 1 Cases in GM equalization. 

for ݅ = 1  and ݅ = 2 . In that case, parallel operation begins for 
throughput acceleration. Fig. 1 depicts the four operations for 
different cases. Note that 2 × 2 equalization and  2 × 2 SVD [9] 
are carried out alternatively in all the cases to achieve GM 
equalization. However, they can be accomplished by CORDIC in 
circular vectoring, circular rotation and hyperbolic rotation modes. 

2.2. EVD 

EVD can also be accomplished by QR decomposition. The 
practical QR algorithm with shift has been shown to have good 
convergence [11]. The EVD procedure is given in Algorithm 2. 
Similarly, it contains two phase. In the first phase, Hessenberg 
reduction is performed. In the second phase, an iterative QR 
process is adopted. After Hessenberg reduction, input matrix ۱ is 

transformed into upper Hessenberg matrix ܁(଴)(= ா௏஽(૙)܃۱ࡴா௏஽(૙)܃ ), a 

tri-diagonal matrix for Hermitian symmetric matrix ۱, where ܃ா௏஽(૙)  
is a unitary matrix.  
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 In step 4 of algorithm 2, a series of left multiplications of 

Givens rotation matrixes that constitute ۿ(௜)ு(= ۵૚(࢏)۵૛(࢏)  is ((࢏)ࡹ۵…
performed. On the other hand, in step 5 and 7, right multiplication 
of matrix ۿ(௜) is required. We can simply handle these two steps 
by using column-wise operations, namely  

(௜ାଵ)܂	          = (௜)ۿ(௜)܀ = ு(࢏)۵ெ(௜)܀ …۵૛(࢏)ு۵૚(࢏)ு.          (12) 

Thus, the directions of micro-rotations during row-wise operations 
are reserved for column-wise operations. 

3. PROPOSED MEMORY-BASED ARCHITECTURE 
FOR MATRIX-DECOMPOSITION PROCESSOR 

The proposed architecture for the matrix decomposition processor 
which adopts memory-based design is depicted in Fig. 2. The main 
memory contains three memory modules for saving the 
decomposed channel matrix, left unitary matrix and right unitary 
matrix. There are 16 processing elements (PEs), eight for value 
computation and eight for basis computation. The left unitary 
matrix memory and right unitary matrix memory are accessed by 
PE9 to PE16 for basis computation while the decomposed channel 
matrix memory is accessed by PE1 to PE8 for value computation. 
Each PE is composed of one CORDIC which can be configured to 
circular vectoring, circular rotation, hyperbolic rotation, and idle 
mode. The circular vectoring mode is used to nullify the undesired 
component and the circular rotation mode is employed to duplicate 
the same operation to the associated elements. The hyperbolic 
mode is required to compute geometric mean in (5) and to generate 
rotation angles for 2 × 2 equalization. 

Since a wide dynamic range is needed to cover various 
decomposition schemes, fixed-point representation for the datapath 
is not sufficient. Consequently, we adopt an external floating-point 
internal fixed-point strategy. The floating-point representation is 
used for the data stored in the memory. From the simulation results 
for the wordlength of mantissa in Fig. 3, GMD is more sensitive to 
finite precision than QRD and EVD. Consequently, 16 bits are 
reserved for the mantissa, 5 bits are allocated for the exponent with 
offset -27. Together with one sign bit, a total of 22 bits are used. 
Compared to [11] which uses 48-bit fixed-point representation, 
floating-point representation is efficient. The quantization results is 
less than 0.2 dB SNR degradation at bit-error rate about 10-3 for 
16-QAM when the CORDIC contains 10 stages. On the other hand, 
the internal datapath of the CORDIC adopts fixed-point 
representation. Thus, a pre-alignment module and a post-alignment 
module are inserted at the input and output of the PE, respectively, 
as shown in Fig. 4. 

 

Fig. 2 Proposed memory-based architecture for the matrix 
decomposition processor. 

 
Fig. 3 Performance simulation for the wordlength of mantissa. 

 

Fig. 4 Block diagram of the PE. 

The control of the operation modes of all PEs are illustrated in 
Fig. 5. Take parts of the bidiagonalization process for GMD as an 
example. Two types of Givens rotations for dealing with complex-
valued channel matrixes are involved [12]. The first type 
transforms the complex element to the real element, called C2R. 
The second type nullifies one real element by another real element, 
called R2Z. The styles of the circles in the red rectangle indicate 
the results after being processed by PEs. The PE configured in the 
vectoring mode delivers the rotation directions to the PEs 
configured in the rotation mode. The scheduling considers high 
hardware utilization and control regularity. The right and left 
unitary matrix memories are first initialized with the identity 
matrix. Then, they are accessed by PE9 to PE16 with mirrored 
operations to generate left and/or right basis matrixes. Thus, the 
row operation and column operation of PE9~PE16 are always 
opposite to PE1~PE8. 

Algorithm 2: EVD algorithm by Givens rotation 
Given Hermitian symmetric matrix ۱ ∈ ℂସ×ସ  
        // First phase 

ா௏஽(૙)܃] .1  HessenbergReduction(۱)=[(଴)܁ ,
// Second phase ݅ =0,  

2. while (!converged) 
(௜)܂          .3 = (௜)܁ −  ௜۷ߤ
,(௜)ۿൣ        .4 ൧(௜)܀ =  ((௜)܂)ܦܴܳ
(௜ାଵ)܂								 .5 =  (௜)ۿ(௜)܀
(௜ାଵ)܁								 .6 = (௜ାଵ)܂ +  ௜۷ߤ
(ା૚࢏)ா௏஽܃								 .7 = (࢏)ா௏஽܃  (௜)ۿ
8.        ݅ = i + 1 

end 
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Fig. 5 Control of the operation modes of all PEs. 

4. IMPLEMENTATION RESULTS AND 
COMPARISON 

The hardware of the proposed matrix-decomposition processor is 
implemented. It takes 12 clock cycles to complete QR 
decomposition and to produce matrix ܀ொோ and ۿொோ	simultaneously, 
saved in decomposed-channel-matrix memory and left-unitary-
matrix memory respectively. For 4 × 4  EVD, it takes 14 clock 
cycles to perform Hessenberg reduction.  Although the 
conventional QR and RQ algorithm is adopted, the shift and 
deflation mechanisms are incorporated in the hardware. Both 
accelerates the convergence by rapidly shrinking matrix dimension. 
Hence, the processor uses 6, 4, 2 clock cycles to complete one QR 
and RQ iteration for 4 × 4, 3 × 3, 2 × 2 matrix, respectively. The 
average processing cycles for 4 × 4 EVD with shift and deflation 
are 120.8 assuming a maximum of 30 iterations. For 4 × 4 GMD, 
the bidiagonalization in the first phase needs 19 clock cycles and 6 
clock cycles are reserved for geometric-mean calculation and 2 × 2 
SVD. The occurrence probability of the GM equalization in four 
cases for randomly-generated channel matrixes is 5.95%, 18.57%, 
4.51%, and 70.97%, respectively. It is clear that the probability of 
the parallel mode is higher than the others. Thus, the complexity 
reduction and throughput acceleration are both achieved. The time 
complexity and computation complexity in each process for 
various matrix decompositions are listed in Table 1. The first term 
in the rightmost column refers to the CORDIC operations for 
decomposing the channel matrix. The second (third) term 
associates with the computation complexity for the left (right)-
unitary matrix.  

Table 2 shows the complexity comparison, in terms of CORDIC 
operations, of different GMD algorithms for deriving ீۿெ஽, ,ெ஽ீ܀ ெ஽ுீ۾ . With the proposed GM calculation in the first 
phase and GM equalization in the second phase, we can achieve 
13.2% complexity reduction assuming that the complexity of the 
square-root operation is similar to one CORDIC operation. Note 
that a generalized matrix-decomposition processor prefers 
algorithms that can be implemented by homogeneous PEs. Table 3 
lists some implementation results of this work and conventional 
works that can provide the complete basis matrixes and value 
matrix. The efficiency is obtained by dividing the decomposition 
rate to the number of CORDIC modules. The EVD in [11] process 
real input matrixes. It takes 15 clock cycles for one QR and RQ 
step to deal with a 4 × 4 matrix and 30 steps are configured [11]. If 
the same systolic array architecture is used to process complex 
input matrixes, 22 CORDIC modules will be required, just like 
[12]. From the table, we can see that our generalized matrix-

decomposition processor is competitive to some dedicated 
hardware and has high hardware efficiency. 

Table 1 Clock cycles and CORDIC operations in each process 
 Process Clock Cycles No. of CORDIC 

operations 
QRD  12 64 + 88 

EVD 

Hessenberg 
Reduction 

14 78 + 48 

4×4 QR & RQ 6 16 + 24 
3×3 QR & RQ 4 10 + 16 
2×2 QR & RQ 2 4 + 8 

GMD 
Bidiagonalization 19 103 + 88 +48 
GM+2×2SVD 6 18 + 16 + 16 
GM Equalization 15.54 38 + 35 + 35 

Table 2 Complexity comparison of GMD algorithms. 
No. of CORDIC 

operations 
[8] This work 

Bidiagonalization 
(Value Compuation) 

103 103 

Remaining GMD 
(Value Computation) 

66 
18 (GM + 2×2 SVD) 
38 (GM Equalization) 

Square Root 8 - 
Bidiagonalization 

(Basis Computation) 
136 136 

Remaining GMD 
(Basis Computation) 

144 102 

Total 457(100%) 397(86.8%) 

Table 3 Comparison of implementations. 
 This 

Work 
[12] This 

Work 
[11] This 

Work 
[9] 

Function 

4 × 4 
QRD 

 

4 × 4 
QRD 

 

4 × 4 
EVD 

 

4 × 4 
EVD 
(Real) 

4 × 4 
GMD 

 

1 × 1 
~ 8 × 8 

GMD 

Output 
Matrix 

 ொோ܀ ொோۿ
ொோுۿ  ொோ܀ 

 ா஽ ઩ா஽܃
 ா஽ ઩ா஽܃

ெ஽ுீ۾ ெ஽ீ܀ ெ஽ீۿ
ெ஽ுீ۾ ெ஽ீ܀ ெ஽ீۿ

No. of 
CORDIC 
modules 

16 22 16 6 16 64 

Processing 
Cycles(1) 

12 8 120.8 450 40.54 578.2 

Process(nm) 40 180 40 - 40 90 
Frequency 

(MHz) 
120 100 120 232 120 112.4 

Rate(M/s)(1) 10 12.5 0.99 0.516 2.96 0.194 
Efficiency(1) 0.625 0.568 0.062 0.086 0.185 0.003 
(1): Consider the results of processing 4x4 complex matrixes except [11]. 

5. CONCLUSION 

A generalized matrix-decomposition processor is presented to 
support QRD, GMD and EVD. The improved GMD algorithm 
saves 13.2% arithmetic complexity and can be accomplished by 
homogeneous PEs. EVD adopts the shift and deflation strategies to 
accelerate convergence. The memory-based architecture offers the 
configurability to support these decompositions. External floating-
point and internal fixed-point representation is used for the 
datapaths to cover a wide dynamic range of different 
decompositions.  It takes 12, 120.8, 40.54 averaged clock cycles to 
process 4 × 4  complex QRD, EVD and GMD. From the 
comparison, the implementation achieves good hardware 
efficiency. 
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