
HARDWARE-BASED LINEAR PROGRAMMING DECODING
VIA THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Mitchell Wasson, Mario Milicevic, Stark C. Draper, Glenn Gulak

University of Toronto
Edward S. Rogers Sr. Department of Electrical and Computer Engineering

m.wasson@mail.utoronto.ca, {mario.milicevic, stark.draper}@utoronto.ca, gulak@eecg.toronto.edu

ABSTRACT

We detail a field-programmable gate array (FPGA) based im-
plementation of linear programming (LP) decoding. LP decoding
frames error correction as an optimization problem. This is in con-
trast to variants of belief propagation (BP) that view error correc-
tion as a problem of graphical inference. LP decoding, when imple-
mented with standard LP solvers, does not easily scale to the block-
lengths of modern error-correction codes. This is the main challenge
we surmount in this paper. In earlier work we demonstrated how to
draw on decomposition methods from optimization theory to build
an LP decoding solver competitive with BP, in terms of both perfor-
mance and speed, but only in double-precision floating point. In this
paper we translate the novel computational primitives of our new
LP decoding technique into fixed-point. Using our FPGA imple-
mentation, we demonstrate that error-rate performance very close to
double-precision is possible with 10-bit fixed-point messages.

Index Terms— Linear programming decoding, alternating di-
rection method of multipliers, field-programmable gate arrays, low-
density parity-check codes, lowering error floors

1. INTRODUCTION AND BACKGROUND

In the early 2000’s, Feldman et al. [1, 2] realized that maximum
likelihood (ML) decoding of a binary linear code C is accomplished
by the integer program minx∈C γ

>x. Here γ is the length-n vec-
tor of log-likelihood ratios (LLR) defined component-wise by γi =
log

(
p(yi|xi=0)
p(yi|xi=1)

)
where yi is the ith channel output symbol. By

applying the “parity polytope” relaxation to the code’s check con-
straints, one obtains a linear program (LP). For a regular low-density
parity-check (LDPC) code of check degree d, the vector of variables
neighboring a check must be an even-weight binary vector. In the
relaxation, neighboring variables can be some convex combination
of even-weight binary vectors. The convex hull of even-weight bi-
nary vectors is called the parity polytope, denoted PPd. In this paper,
we assume (t, d)-regular codes for notational simplicity and space.
However, this work is easily generalized to irregular codes [3].

LP decoding generated much excitement, but standard LP
solvers do not scale to the blocklengths of modern error-correcting
codes. A number of attempts to build low-complexity LP decoders
followed, either through “softening” [4, 5] or solving a sequence of
simpler LPs [6]. Barman et al. developed an application-specific
LP decoder that is computationally competitive with BP and has the

This work was supported by the National Science and Engineering Re-
search Council (NSERC) of Canada, in part through a Discovery Research
Grant, and by the National Science Foundation (NSF) under Grant CCF-
1217058.

same message-passing schedule as BP [7]. The LP decoding prob-
lem was solved in [7] by applying the alternating direction method of
multipliers (ADMM), a decomposition technique from large-scale
optimization [8], which further enabled the study of LP decoding
performance for long blocklengths. It was then observed empiri-
cally, and later confirmed theoretically, that LP decoders outperform
BP in the high-SNR regime [7, 9, 10].

To improve ADMM-LP decoding further, Liu and Draper aug-
mented the linear objective with a penalty term designed to discour-
age fractional solutions or “pseudocodewords” [11]. Additionally,
centering ADMM-LP about the origin via a simple variable substi-
tution removes some asymmetries [3]. We let xNj be the length-d
vector containing the components of x connected check j. Then the
centered and `1-penalized ADMM-LP optimization problem is

min γ>x− α‖x‖1
subject to zj = xNj and zj ∈ PPc

d j = 1, . . . ,m

x ∈
[
− 1

2
, 1
2

]n (1)

where α > 0 is the penalty parameter. Because of the centering
transformation, (1) uses the centered parity polytope PPc

d, obtained
by subtracting the all- 1

2
vector from every point in PPd. The zj’s

are replica variable vectors used to enforce the parity polytope con-
straints in check updates. An important difference from BP is that
ADMM-LP’s check updates maintain an internal state. These states
are dual variables that softly enforce the zj = xNj constraints.

There has been interest in moving ADMM-LP toward a hard-
ware implementation. Several groups have made progress in creat-
ing an efficient algorithm for performing Euclidean projection onto
the parity polytope [12, 13, 14], the main computational primitive
of ADMM-LP decoding. In particular, Wasson and Draper investi-
gated mapping this operation to hardware [14]. Additionally, several
implementation papers have considered ADMM-LP decoding. Deb-
babi et al. investigated how to more efficiently schedule messages
and developed a multicore implementation [15, 16]. Jiao et al. mod-
ified the penalization scheme to better error-rate performance [17].
Finally, Wei et al. implemented ADMM-LP avoiding parity poly-
tope projection when possible [18].

While useful investigations, these studies do not demonstrate
whether or not ADMM-LP decoding is viable in hardware. In this
paper, we present an FPGA-based ADMM-LP decoder implementa-
tion. Through our RTL Verilog implementation, we show that frame
error rate (FER) performance very close to double-precision BP and
ADMM-LP is possible with a fixed-point hardware implementation.
Additionally, we analyze resource usage. While our implementa-
tion can be synthesized for many codes [3], due to space constraints
we focus on an ensemble of length-1002 (3, 6)-regular Quasi-Cyclic
(QC) LDPC codes.

1143978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

Check State

Memory

v1,1

Variable-to-Check

Message Memory

v1,2 v1,s

v2,1 v2,2 v2,s

vr,1 vr,2 vr,s

c1,1

Check-to-Variable

Message Memory

c1,2 c1,s

c2,1 c2,2 c2,s

cr,1 cr,2 cr,s

LLR

Memory

γ1

γ2

γs

Estimate

Memory

x1

x2

xs

Variable

Processing

Nodes

VN1

VN2

VN3

VNs

Check

Processing

Nodes

CN1

CN2

CN3

Input

LLRs

Decoded

Codeword

Output

Check State

Memory
CN1

CN2

CN3

VN-to-CN MemoryVN1

VN2

VN3

VN4

VN5

VN6

CN-to-VN Memory

Estimate

Memory

LLR

Memory

a

Bus Dimensions
a = 6 x Q0.7 d = 3 x 6 x Q2.7
b = 6 x 3 x Q0.9 e = 6 x 3 x Q2.7
c = 3 x 6 x Q0.9

b

c d

dd

ea

Check State

Memory
CN1

CN2

CN3

VN-to-CN MemoryVN1

VN2

VN3

VN4

VN5

VN6

CN-to-VN Memory

a

Bus Dimensions: (# Buses) x (# Messages/Bus) x (Message Representation)

a = 6 x Q0.7 b = 6 x 3 x Q0.9 c = 3 x 6 x Q0.9 d = 3 x 6 x Q2.7 e = 6 x 3 x Q2.7

b

c d

dd

ea

LLR

Memory

Estimate

Memory

Fig. 1: Decoder architecture for a (3, 6)-regular QC-LDPC code.

2. IMPLEMENTATION

2.1. Decoder

Our goal is to develop a hardware proof-of-concept that can be used
to study the error-correction performance of ADMM-LP. An FPGA-
based platform provides a re-programmable and cost-effective solu-
tion. Given that ADMM-LP has the same message-passing structure
as BP, we can draw upon existing hardware architectures. We imple-
ment a partially-parallel architecture to increase simulation speed,
while adhering to the fixed resource constraints of an FPGA [19].

A central challenge in implementing hardware-based decoders
is the scalability of the message-passing network. The network re-
quires resource-intensive wiring and memory interconnect resources
to pass messages between check node (CN) and variable node (VN)
processing units. We restrict ourselves to QC codes [20, 21] in or-
der to simplify message routing and memory interfacing. QC codes
have parity-check matrices formed by tilings of p×p circulant matri-
ces. The tilings naturally divide the parity-check matrix into s = n

p

“proto” columns and r = m
p

proto-rows.
The partially-parallel architecture combined with the QC code

restriction allows us to minimize FPGA routing complexity by im-
plementing the message-passing network with regularly-distributed
FPGA block RAMs. Figure 1 presents an overview of our partially-
parallel architecture. The architecture is comprised of multiple
memory types to store LLRs, intermediate messages, and output
codewords, as well as pipelined CN and VN processing units. The
LLR and codeword estimate memories consists of s depth-p RAMs.
The VN-to-CN message, CN-to-VN message, and check state mem-
ories each have a depth-p RAM for each circulant matrix in the
code’s parity check matrix. Multiple RAMs are used in each mem-
ory to facilitate simultaneous reads or writes from all VNs or CNs.
In our implementation, VN and CN execution alternates until a
maximum number of iterations is reached, without early termina-
tion. VNs and CNs are pipelined such that a VN or CN computation
can start every clock cycle.

The LLRs, codeword estimates, and messages passed between
VNs and CNs are signed fixed-point numbers implemented in the Q
format [22]. Through experimentation, we found that 10-bit internal
messages and 8-bit LLRs are required to obtain FER performance
close to double-precision implementations [3]. Experimentation also
showed that maximizing the number of LLR fraction bits provides
the best FER performance [3]. This results in Q0.7 LLRs. As we will
see, VN-to-CN messages and codeword estimates are guaranteed to
be between − 1

2
and 1

2
. Therefore, Q0.9 VN-to-CN messages and

Q0.7 codeword estimates are used. CN-to-VN messages and check
state values are implemented with Q2.7 since additional dynamic
range is required to override LLRs in the VN addition computation.

2.2. Variable Node Compute Module

Figure 2 illustrates the architecture and execution of a VN. The LLR
γi is first subtracted from the addition of all incoming CN-to-VN
messages. To avoid overflow, we use a Q4.7 adder tree output, which
is then penalized by adding α, 0, or −α based on the selection of a
3-to-1 multiplexer. Penalization pushes variable estimates farther in
the direction of their current belief, thus discouraging pseudocode-
words. Another integer bit is added here to avoid overflow. Note that
the α in Fig. 2 is a normalized version of the α in (1). See [3] for the
full algorithm derivation and discussion.

The next VN step is to normalize the penalized sum by the vari-
able degree t. Division by t is performed by finding its reciprocal
during synthesis and executing the normalization using a multiplier.
A hard-wired DSP block is used to perform the multiplication un-
less t is a power of 2. To form the new variable estimate xi, the
above normalization must be projected onto the centered unit inter-
val, which guarantees that the estimate is between− 1

2
and 1

2
. There-

fore a Q0.9 format is used. To form the variable estimate, it is crucial
to round when discarding excess fraction bits, rather than truncate,
since the downward bias of truncation results in different FER per-
formance among codewords. The new variable estimate xi is sent
to all connected checks. This is in contrast to BP, where a different
message is sent to each connected check.

The adder tree is the most resource intensive VN component,
and scales as O (t) in area and O (log t) in delay.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Prefix
Sum <-1 Priority

Encoder

d
to
1

- +

-1/2
0

1

-1/2

< -1/2

v
w

1/i for i=1...d

Sort

+
+

Projection
<< 1

-
+
-

iJ�
 + 1
Adder Tree

+

> 0

== 0
1 0 1
1 x 0
D D�0

it is

1�

< -1/2

> 1/2

it
0 0

0 1

1 0
ix

1/2
-1/2

< -1/2

> 1/2

0 0

0 1

1 01/2
-1/2

0

1

-

Facet
IDv

Simplex
Projection

f

< -1/2

> 1/2

0 0

0 1

1 01/2
-1/2

0

1

-

0

1

d Adder
Tree ≥ 1 - d/2

[-½, ½] Projection

Membership Test

w

Transform Transform

≥ 0

1

0

-v Arg Min
Tree

XOR Tree
(d bits)

0

1

0 f

Facet ID:

Check State

CN-to-VN
Messages

Check
State

|v|

Prefix
Sum <

-1 Priority
Encoder

d
to
1

- +

-1/2
0

1

-1/2

< -1/2

V
W

1/i for i=1...d

Sort

p

+
+

Projection
<< 1

-

+
-

iJ�
 + 1
Adder Tree

+

> 0

== 0
1 0 1
1 x 0
D D�0

it is

1�

< -1/2

> 1/2

it
0 0

0 1

1 0
ix

1/2
-1/2

< -1/2

> 1/2

0 0

0 1

1 0
ix

1/2
-1/2

0

1
W-

Facet
ID

t +1

1/t

Fig. 2: Variable node compute module.

2.3. Check Node Compute Module

	

Prefix
Sum <-1 Priority

Encoder

d
to
1

- +

-1/2
0

1

-1/2

< -1/2

v
w

1/i for i=1...d

Sort

+
+

Projection
<< 1

-
+
-

iJ�
 + 1
Adder Tree

+

> 0

== 0
1 0 1
1 x 0
D D�0

it is

1�

< -1/2

> 1/2

it
0 0

0 1

1 0
ix

1/2
-1/2

< -1/2

> 1/2

0 0

0 1

1 01/2
-1/2

0

1

-

Facet
IDv

Simplex
Projection

f

< -1/2

> 1/2

0 0

0 1

1 01/2
-1/2

0

1

-

0

1

d Adder
Tree ≥ 1 - d/2

[-½, ½] Projection

Membership Test

w

Transform Transform

≥ 0

1

0

-v Arg Min
Tree

XOR Tree
(d bits)

0

1

0 f

Facet ID:

Check State

CN-to-VN
Messages

Check
State

|v|

Fig. 3: Check node compute module.

Figure 3 illustrates the architecture and execution of a CN. Exe-
cution starts by performing a length-d vector addition with the check
state vector and VN-to-CN messages xNj . An extra integer bit is
added to each component to prevent overflow.

The output of the vector addition is fed into the parity poly-
tope projection module, which produces a new value for the variable
replica vector zj . The components of zj are guaranteed to be be-
tween − 1

2
and 1

2
, hence a Q0.12 format is used. At convergence, zj

will be equal to the incoming vector of VN-to-CN messages.
New check state and CN-to-VN messages are computed in par-

allel using vector additions from the parity polytope projection in-
put and output. Pipeline registers store the parity polytope projec-
tion input while the projection is computed, and CN outputs are also
rounded to avoid codeword bias.

1144

Parity polytope projection dominates CN resource utilization
with O

(
d(log d)2

)
area scaling (primarily from the storage of

intermediate values), and O
(
(log d)2

)
delay scaling.

2.4. Parity Polytope Projection

Our method for computing the Euclidean projection of a vector onto
PPc

d is depicted in Fig. 4. This method creates a projection onto
the shell of PPc

d and a projection onto the centered hypercube [14,
3]. If the unit hypercube projection is within the parity polytope,
then that projection is chosen as the module output. Otherwise, the
parity polytope shell projection is used. This 2-step procedure is
followed because an efficient general parity polytope membership
test is not known. However, with the assumption of unit hypercube
membership, parity polytope membership is easily tested.

Prefix

Sum
<

-1 Priority

Encoder

d

to

1

- +

-1/2

0

1

-1/2

< -1/2

v

w

1/i for i=1...d

Sort

+

+

Projection
<< 1

-
+
-

i

 + 1

Adder Tree

+

> 0

== 0
1 0 1

1 x 0

 0

it is

1

< -1/2

> 1/2

it
0 0

0 1

1 0

ix

1/2

-1/2

< -1/2

> 1/2

0 0

0 1

1 01/2

-1/2

0

1

-

Facet

ID
v

Simplex

Projection

f

< -1/2

> 1/2

0 0

0 1

1 01/2

-1/2

0

1

-

0

1

d Adder

Tree
≥ 1 - d/2

[-½, ½] Projection

Membership Test

w

Transform Transform

≥ 0

1

0

-v Arg Min

Tree

XOR Tree

(d bits)

0

1

0 f

Facet ID:

Check State

CN-to-VN

Messages

Check

State

|v|

Fig. 4: Parity polytope projection. N.B., the computation block for
facet identification in the upper figure is presented in the dotted box.

Projecting onto the shell of PPc
d is accomplished via a projection

onto the centered probability simplex Sc
d. Sc

d is created by subtract-
ing the all- 1

2
vector from every point in the d-dimensional probabil-

ity simplex. First, the relevant parity polytope facet is identified by
checking the sign of each input vector component. Next, a similarity
transform is performed to align the identified facet with Sc

d, followed
by the simplex projection. Finally, the transform is inverted to obtain
the projection onto the shell of PPc

d. The unit hypercube projection
is implemented by component-wise saturation at − 1

2
and 1

2
.

The parity polytope membership test takes the transformed in-
put, projects it onto the unit hypercube, and determines which side of
Sc
d this point lies on. Alternatively, one could transform the input’s

unit hypercube projection and test which side of Sc
d it lies on.

Simplex projection is most resource intensive, scaling in area as
O

(
d(log d)2

)
andO

(
(log d)2

)
in delay. Again, storage of interme-

diate values in pipeline registers has a large impact on area usage.

2.5. Simplex Projection

Figure 5 presents our implementation of the probability simplex pro-
jection method developed by Duchi et al. [23] and modified as in [3]
to project a point onto Sc

d. The basic premise is to shift the point to
be projected along the all-1 vector, and then to clip (saturate) compo-
nents at a lower bound. The shift along the all-1 vector follows from
geometry: we minimize the Euclidean norm and the all-1 vector is
orthogonal to the simplex.

Prefix

Sum
<

-1 Priority

Encoder

d

to

1

- +

-1/2

0

1

-1/2

< -1/2

v

w

1/i for i=1...d

Sort

+

+

Projection
<< 1

-
+
-

i

 + 1

Adder Tree

+

> 0

== 0
1 0 1

1 x 0

 0

it is

1

< -1/2

> 1/2

it
0 0

0 1

1 0

ix

1/2

-1/2

< -1/2

> 1/2

0 0

0 1

1 01/2

-1/2

0

1

-

Facet

ID
v

Simplex

Projection

f

< -1/2

> 1/2

0 0

0 1

1 01/2

-1/2

0

1

-

0

1

d Adder

Tree
≥ 1 - d/2

[-½, ½] Projection

Membership Test

w

Transform Transform

≥ 0

1

0

-v Arg Min

Tree

XOR Tree

(d bits)

0

1

0 f

Facet ID:

Check State

CN-to-VN

Message

Fig. 5: Simplex projection.

This projection starts by sorting the input vector into descending
order. Sorting networks, described in [24], accomplish sorting in
hardware. Specifically, delay optimal networks from [24] are used
for d ≤ 16. Batcher’s general merge sort construction can be used
for larger dimensions [25, 14, 3].

Next, a prefix sum operation is performed using Ladner and Fis-
cher’s minimum delay construction [26]. Normalization by the num-
ber of sorted vector components in each prefix sum component fol-
lows. Similar to VNs, this is accomplished with multiplication.

The result of the normalization is a set of possible shift values to
be subtracted from the input vector. The final shift value is chosen as
the largest indexed component that is greater than the corresponding
component in the sorted vector. Comparison operations produce a
vector indicating which components satisfy this condition. The indi-
cator vector is then fed into a priority encoder to produce a one-hot
vector identifying the shift value we want. The shift is then sub-
tracted from all components of the input vector, and vector compo-
nents are clipped at − 1

2
if necessary.

Batcher’s sorting method has O
(
d(log d)2

)
area scaling and

O
(
(log d)2

)
delay scaling. As before, storage of intermediate val-

ues in pipeline registers has a large effect on area usage.

3. RESULTS

We perform experiments on an ensemble of five [1002, 503] QC-
LDPC codes created by randomly generating “base” matrix [21] val-
ues while ensuring a minimum girth of six, using methods from [27].
An example 3 × 6 base matrix for one of these codes is [115 13 25
166 17 129; 124 38 137 13 160 136; 75 152 89 73 0 145].

Channel simulation was performed on the FPGA using a Gaus-
sian random number generator [28]. The channel output must be
saturated to produce LLRs in the decoder’s input range. We found
the optimal saturation value to be the channel input symbol magni-
tude (usually ±1 for BI-AWGN model) plus one standard deviation
of channel noise [3]. In all simulations, we set a maximum of 60
iterations. All data points correspond to 100 frame errors per code.

Figure 6 shows the FER performance averaged across all codes.
Double-precision results were generated with Liu’s code [29], also
used in [7]. We can see that the fixed-point ADMM-LP implemen-
tation maintains performance close to the double-precision imple-
mentation. Furthermore, penalized ADMM-LP decoding has FER
performance close to Butler and Siegel’s non-saturating BP imple-
mentation [30] without displaying an error floor.

1145

1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

F
E

R

Fixed−Point ADMM−LP
Double−Precision ADMM−LP
Fixed−Point Penalized ADMM−LP
Double−Precision Penalized ADMM−LP
Double−Precision Non−Saturating BP

Fig. 6: Code ensemble performance on the BI-AWGN channel.

Table 1 presents a comparison of our FPGA-based implementa-
tion of ADMM-LP decoding to a min-sum decoder for a QC-LDPC
code with the same code rate and comparable block length, also
implemented with a partially-parallel architecture. We synthe-
sized and implemented our decoder on an Altera Stratix V (model
5SGXEA7N2F45C2) FPGA. Based on our FPGA resource results
presented in Table 1, CNs account for 85% of all Adaptive Logic
Module (ALM) usage, VNs for 6%, and memory modules for
8%. Power estimates from Altera’s power analyzer tool based on
gate-level simulation report a total decoder power consumption of
863mW, with 797mW of dynamic power and 66mW of static power.
When considering power consumption, CNs account for 76%, VNs
for 6%, and memories for 17%. Each degree-6 CN uses 4,046
ALMs, 3 DSP blocks, and is 47 pipeline stages deep. Each degree-3
VN uses 140 ALMs, 1 DSP block, and is 9 pipeline stages deep.
Inside a CN, 89% of ALM consumption and 94% of power con-
sumption is due to parity polytope projection. Simplex projection
accounts for 52% of CN ALM usage and 56% of CN power con-
sumption. Finally, sorting accounts for 21% of both CN ALM usage
and power.

4. DISCUSSION AND CONCLUSIONS

In this paper we demonstrate that ADMM-LP decoding can attain
excellent error-rate performance in a fixed-point implementation.
While our initial implementation requires higher fixed-point preci-
sion and more logic resources than min-sum, this study points to
numerous possible avenues for future developments; developments
that could bring ADMM-LP’s resource requirements into line with
those of other message passing decoders.

One direction to pursue is algorithmic simplification. Just as
min-sum can be viewed as an computationally simple approxima-
tion of BP, we can seek approximations of ADMM-LP that preserve
ADMM-LP’s high-SNR performance. As one such example, in [3]
it is observed that implementing partial-sort (rather than full-sort)
can result in negligible performance reduction in error rates. As a
second example, while we implemented hooks for early termination
in our RTL Verilog code, we did not allow early termination in the
presented results. A study of the effects of early termination would
be quite useful.

Table 1: FPGA-based LDPC decoder comparison

Chandrasetty [31] This Work
2011 2016

Algorithm Min-Sum ADMM-LP
Architecture Partially parallel Partially parallel
Block Length 1152 1002

Code Design Rate 1/2 1/2
Code Structure Quasi-cyclic Quasi-cyclic

Number Iterations 10 60
BER Performance 1×10−5 at 3dB 2×10−7 at 3dB ∗

Target FPGA Xilinx Virtex 2 Altera Stratix V
Message Width

(Bits) 4 LLR: 8
Internal: 10

Early Termination No No
Clock Freq. (MHz) 64 224
Throughput (Mb/s) 50 8.52

Throughput Per
Iter. (Mb/s/Iter) 5 0.142

Latency / Iter. (µs) 2.30 1.96
Power Est. (mW) 322 863
Logic Resources 2778 Slices 14315 ALMs

Memory (Kbits) 19.5
(29 BRAMs)

106.2
(47 BRAMs)

DSP Blocks N/A 15

∗ N.B., the bit error rate (BER) presented here corresponds to that achieved by
fixed-point penalized ADMM-LP, the FER of which is plotted in Fig. 6.

A second set of directions are hardware-centric. Numerous in-
teresting challenges yet remain in the design of a hardware-efficient
implementation of ADMM-LP. For example, it is not obvious how to
implement a CN or a VN unit that can handle multiple node degrees.
We believe that this problem can be solved through innovative hard-
ware sharing or algorithmic generalization. As a second example,
ADMM-LP also provides an opportunity for simplifying message-
passing networks; especially when considering a fully-parallel archi-
tecture. This is because the same message is sent from each variable
to all connected checks. Such message broadcasting can perhaps be
exploited to reduce interconnect complexity. Finally, this study is a
first step en-route to the development of a fully custom, in-silicon,
application specific integrated circuit (ASIC). An ASIC would allow
for high-performance, power-optimized register files and customized
message passing resources that would yield significant performance
improvements not possible in FPGA realizations.

Referring to Table 1, we point out that while our normalized
throughput per iteration is 35× lower than that of the min-sum
decoder of [31], our ADMM-LP decoder achieves a bit-error rate
(BER) nearly 100× better. This is the crux of the matter. If one
is concerned with applications where excellent performance in the
high-SNR regime is required, a regime where algorithms such
as min-sum or sum-product encounter error-floor problems, then
ADMM-LP should be an algorithm of great interest. Our current
implementation is already outperforming min-sum with less than an
order of magnitude difference in the number of FPGA resources re-
quired. Further development, and innovation, could turn ADMM-LP
into the algorithm of choice in such regimes of operation.

1146

5. REFERENCES

[1] Jon Feldman, Decoding Error-Correcting Codes via Linear
Programming, Ph.D. thesis, Massachusetts Institute of Tech-
nology, USA, 2003.

[2] Jon Feldman, Martin J. Wainwright, and David R. Karger, “Us-
ing linear programming to decode binary linear codes,” IEEE
Trans. Inf. Theory, vol. 51, no. 3, pp. 954–972, Mar. 2005.

[3] Mitchell Wasson, “Hardware-based linear program decoding
with the alternating direction method of multipliers,” M.S. the-
sis, University of Toronto, Canada, Aug. 2016.

[4] Pascal O. Vontobel and Ralf Koetter, “Towards low-complexity
linear-programming decoding,” in Proc. 4th Int. Symp. Turbo
Codes and Related Topics, Munich, Germany, Apr. 2006, pp.
1–9.

[5] David Burshtein, “Iterative approximate linear programming
decoding of LDPC codes with linear complexity,” IEEE Trans.
Inf. Theory, vol. 55, no. 11, pp. 4835–4859, Nov. 2009.

[6] M. H. Taghavi and Paul H. Siegel, “Adaptive methods for lin-
ear programming decoding,” IEEE Trans. Inf. Theory, vol. 54,
no. 12, pp. 5396–5410, Nov. 2008.

[7] Siddharth Barman, Xishuo Liu, Stark C. Draper, and Benjamin
Recht, “Decomposition methods for large scale LP decoding,”
IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 7870–7886, Dec.
2013.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in
Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[9] Xishuo Liu and Stark C. Draper, “Instanton search algorithm
for the ADMM penalized decoder,” in Proc. Int. Symp. Inf.
Theory, Honolulu, June 2014.

[10] Xishuo Liu and Stark C. Draper, “ADMM decoding on trap-
ping sets,” in Proc. Int. Symp. Inform. Theory, Hong Kong,
June 2015.

[11] Xishuo Liu and Stark C. Draper, “The ADMM penalized de-
coder for LDPC codes,” IEEE Trans. Inf. Theory, vol. 62, no.
6, pp. 2966–2984, June 2016.

[12] Xiaojie Zhang and Paul H. Siegel, “Efficient iterative LP de-
coding of LDPC codes with alternating direction method of
multipliers,” in Proc. IEEE Int. Symp. Inf. Theory, Istanbul,
Turkey, July 2013, pp. 1501–1505.

[13] Gouqiang Zhang, Richard Heusdens, and W. Bastiaan Kleijn,
“Large scale LP decoding with low complexity,” IEEE Com-
mun. Lett., vol. 17, no. 11, pp. 2152–2155, Nov. 2013.

[14] Mitchell Wasson and Stark C. Draper, “Hardware based pro-
jection onto the parity polytope and probability simplex,” in
Proc. 49th Asilomar Conf. Signals, Systems, Computers, Pa-
cific Grove, CA, Nov. 2015, pp. 1015–1020.

[15] Imen Debbabi, Bertrand Le Gal, Nadia Khouja, Fethi Tlili, and
Christophe Jego, “Fast converging ADMM-penalized algo-
rithm for LDPC decoding,” IEEE Commun. Lett., vol. 20, no.
4, pp. 648–651, Apr. 2016.

[16] Imen Debbabi, Bertrand Le Gal, Nadia Khouja, Fethi Tlili, and
Christophe Jego, “Analysis of ADMM-LP algorithm for LDPC
decoding, a first step to hardware implementation,” in IEEE
Int. Conf. Electronics, Circuits, and Systems, Cairo, Egypt,
Dec. 2015, pp. 356–359.

[17] Xiaopeng Jiao, Haoyuan Wei, Jianjun Mu, and Chao Chen,
“Improved ADMM Penalized decoder for irregular low-
density parity-check codes,” IEEE Commun. Lett., vol. 19, no.
6, pp. 913–916, June 2015.

[18] Haoyuan Wei, Xiaopeng Jiao, and Jianjun Mu, “Reduced-
complexity linear programming decoding based on ADMM for
LDPC codes,” IEEE Commun. Lett., vol. 19, no. 6, pp. 909–
912, June 2015.

[19] Dale E. Hocevar, “A reduced complexity decoder architecture
via layered decoding of LDPC codes,” in Proc. Work. Signal
Proc. Systems, Oct. 2004.

[20] Yu Kou, Shu Lin, and Marc P. C. Fossorier, “Low-density
parity-check codes based on finite geometries: A rediscovery
and new results,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp.
2711–2736, Nov. 2001.

[21] Marc P. C. Fossorier, “Quasicyclic low-density parity-check
codes from circulant permutation matrices,” IEEE Trans. Inf.
Theory, vol. 50, no. 8, pp. 1788–1793, Aug. 2004.

[22] Shoab Ahmed Khan, Digital design of signal processing sys-
tems: a practical approach, John Wiley & Sons, 2011.

[23] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar
Chandra, “Efficient projections onto the `1-ball for learning in
high dimensions,” in Proc. Int. Conf. Machine Learning, San
Diego, USA, Dec. 2008.

[24] Donald E. Knuth, The Art of Computer Programming: Sorting
and Searching, vol. 2, Addison Wesley Longman, Redwood
City, CA, USA, 2 edition, 1998.

[25] Kenneth E. Batcher, “Sorting networks and their applications,”
in Proc. AFIPS Spring Joint Computer Conf. Apr. 1968, pp.
307–314, ACM.

[26] Richard E. Ladner and Michael J. Fischer, “Parallel prefix
computation,” J. of the ACM, vol. 27, no. 4, pp. 831–838, Oct.
1980.

[27] Yige Wang, Stark C. Draper, and Jonathan S. Yedidia, “Hi-
erarchical and high-girth QC LDPC codes,” IEEE Trans. Inf.
Theory, vol. 59, no. 7, pp. 4553–4583, July 2013.

[28] Guangxi Liu, “Gaussian noise generator,” webpage accessed
Jan. 2016, http://opencores.org/project,gng.

[29] Xishuo Liu, “ADMM decoder,” webpage accessed Jun. 2015,
https://sites.google.com/site/xishuoliu/codes.

[30] Brian K. Butler and Paul H. Siegel, “Error floor approxima-
tion for LDPC codes in the AWGN channel,” IEEE Trans. Inf.
Theory, vol. 60, no. 12, pp. 7416–7441, Dec. 2014.

[31] Vikram A. Chandrasetty and Syed M. Aziz, “A multi-level
hierarchical quasi-cyclic matrix for implementation of flexible
partially-parallel ldpc decoders,” in 2011 IEEE Int. Conf. Mul-
timedia and Expo, July 2011, pp. 1–7.

1147

