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ABSTRACT

It is well-known that the precision of data, weight vector, and
internal representations employed in learning systems directly
impacts their energy, throughput, and latency. The precision
requirements for the training algorithm are also important for
systems that learn on-the-fly. In this paper, we present analyt-
ical lower bounds on the precision requirements for the com-
monly employed stochastic gradient descent (SGD) on-line
learning algorithm in the specific context of a support vector
machine (SVM). These bounds are obtained subject to desired
system performance. These bounds are validated using the
UCT breast cancer dataset. Additionally, the impact of these
precisions on the energy consumption of a fixed-point SVM
with on-line training is studied. Simulation results in 45 nm
CMOS process show that operating at the minimum precision
as dictated by our bounds improves energy consumption by a
factor of 5.3 as compared to conventional precision assign-
ments with no observable loss in accuracy.

Index Terms— machine learning, fixed point, precision,
energy, accuracy

1. INTRODUCTION

Precision of data, weight vector, and internal signal repre-
sentations in a machine learning implementation has a deep
impact on its energy consumption and throughput. Recent
works have empirically studied the effect of moderate [1] and
heavy [2, 3, 4, 5] quantization on the performance of learning
systems. A more analytical approach has recently emerged
where signal-to-quantization noise ratio (SQNR) is used as a
metric to attempt establishing precision to accuracy trade-offs
for the feedforward path [6] and training [7] of deep neural
networks.

Our work addresses the problem of a systematic way of
assigning precision to a fixed-point learning system while
providing accuracy guarantees. We study the specific case of
a support vector machine (SVM) [8] being trained using the
stochastic gradient descent (SGD) algorithm, i.e., the SVM-
SGD algorithm. Our approach is analytical in contrast to the
trial-and-error approach employed today. Energy consump-
tion is also brought in as a metric for consideration in the
design of learning systems.
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1.1. Contributions

Our contributions in this paper are the following: we provide
analytical lower bounds on the precision of the data, weight
vector, and training parameters for the SVM-SGD algorithm
subject to requirements on classification accuracy. We also
study the impact of precision reduction on the energy con-
sumption of a baseline SVM-SGD architecture by employ-
ing architectural level energy and delay models in a 45 nm
CMOS process. We show that up to 5.3 x reduction in energy
is achieved when precisions are assigned based on the lower
bounds as compared to a 16 b baseline implementation.

The rest of this paper is organized as follows. Section
2 presents necessary background on which we build up our
work. Section 3 proposes our analytical bounds on precision
for fixed-point implementations. Experimental results are in-
cluded in Section 4. We conclude our paper in Section 5.

2. BACKGROUND

2.1. Online Learning SVM (SVM-SGD)

SGD is an efficient training method for machine learning al-
gorithms [9]. At each iteration, the weight vector of the algo-
rithm is updated as follows:

Wnt1 = Wp — ’YVWQ(Zn;Wn) (])

where )(+) is the loss function to be minimized, - is the step-
size, w,, € RP is the weight vector to be learned, z,, is the
streamed sample which usually consists of an input data vec-
tor x,, and a corresponding label y,,, and D is the dimension-
ality of the input data.

SVM [8] is a simple and popular supervised learning
method for classification. SVM operates by determining a
maximum margin separating hyperplane in the feature space.
For regularization, some feature vectors may be allowed to lie
inside the margin making it a soft margin. The SVM predicts
the label 3, € {£1} given a feature vector (i.e., input data
vector) x,, as follows:

gn=1
wix,+b = 0 )
gn=—1

where w is the weight vector and b is the bias term. The
classification error for the SVM is defined as p. = P{Y #
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Fig. 1: SVM-SGD algorithm’s architecture showing the pre-
cision per dimension.

Y} In the rest of this paper, we employ capital letters to
denote random variables.

The optimum weight vector w in (2) maximizes the mar-
gin or minimizes the average of following loss function:

Q(zn, w) = A(||w||*+b%)+max{0, 1 -y, (wx,4b)} (3)

It can be shown that, when applied to the SVM algorithm,
specifically the loss function defined in (3), the SGD update
equation is [9]:

0 if yo(wlx, +b) > 1,

wn+1—(1'y)\)wn+{ .
Y Yn X,  Otherwise.

0 if yo(wlx, +b) > 1,

b1 = (1 = yA)bn + { .
Yy, otherwise.

“

2.2. Architectural Energy and Delay Models

Fig. 1 shows the architecture of the SVM-SGD algorithm
and indicates the precision assignments (per dimension) for
the input By, the classifier Br, and the weight update Byy .
The critical path of the architecture is any path between two
latch nodes having the maximum delay, assuming inputs and
outputs are also latched. The main building block of such
computational system is the 1 b full-adder (FA). Hence the
critical path is the one having maximum number of FAs. The
maximum throughput at which the architecture can operate is
the reciprocal of the critical path delay as follows [10]:
Ion

mar — L1 o~ 175 5
f BLFACFAVid ©)

where L4 is the number of FAs in the critical path of the
architecture, C'z 4 is the load capacitance of one FA, [ is an
empirical fitting parameter, o is the ON current of a tran-
sistor, and V4 is the supply voltage at which the architecture
is being operated at. The energy consumption of the architec-
ture operating at fy,q. is given by [10]:

.
E = aNpaCpaV2 + BNpaLpaCraVi10~ 5 (6)

where N 4 is the total number of FAs in the system, « is the
activity factor, and S is the subthreshold slope.

It is found [11] that both Nr4 and L4 are linear in the
precisions Bx, Br, and By . Since E is proportional to the
product of Np4 and Lp 4, F is a quadratic function of these
precisions. This clearly indicates the importance of minimiz-
ing Bx, Bp, and By. Note, this analysis assumes standard
implementation using ripple carry adders and Baugh-Wooley
multipliers.

3. ANALYTICAL BOUNDS ON PRECISION

The impact of precisions of data (Bx), weight vector (Bp),
and weight update block (By) on the overall SQNR is well
established for finite-impulse response (FIR) filters and least
mean-squared (LMS) adaptive filters [12]. In this section, we
analytically predict the accuracy of the SVM-SGD algorithm
as a function of Bx, Bp, and By . All details concerning the
derivation and proofs of the upcoming results can be found in
[11].

3.1. Classification Block

We assume that the input data is quantized to Bx bits and
is hence corrupted by quantization noise that is indepen-
dently uniformly distributed on [—%, %] per dimension
[13]. Note that A, = 2= (Bx—1) i5 the input quantization
step. Similarly, the weights are quantized to By bits and are
hence corrupted by quantization noise that is independently
uniformly distributed on [f%, %] per dimension where
Af =2 (Br-1),

Our first result is a lower bound derived based on the geo-
metric property of the SVM. This lower bound on Bx ensures
that any datapoint lying outside the margin is classified cor-

rectly even after being perturbed by quantization noise.

Theorem 3.1 (Geometric Bound).
Given D, B, and ||w||, a feature vector x lying outside the
margin will be classified correctly if

VD||wl|
1—(1+VDlxl))2=Fr )

Bx > 10g2 < @)

Proof. The main idea is to make sure that the worst case
quantization noise is less than the functional margin of the
classifier. For details, please see [11]. O
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The geometric bound reveals the following: larger SVM
margin (i.e., smaller ||w]||) allows greater reduction of Bx;
there is a trade-off relation between Bx and Bp; higher di-
mension D and larger ||x|| require more input precision Bx.

Note that Theorem 3.1 is specific to a single feature vec-
tor x. The following is a simple corollary that applies to all
datapoints in the dataset lying outside the margin.

Corollary 3.1.1.
Given D, Br, and ||w||, any feature vector in the dataset X
lying outside the margin will be classified correctly if

VD||wl|
1—-(1+ \/ﬁma/%(HxH)Z*BF
x€

Bx > log,

®)

It is worth noting that ma?| |x||< v/D because of normal-
x€

ization.

Let fo be the output of the fixed-point classifier and f/fl
be the output of the floating-point classifier. Our next result is
an upper bound on the mismatch probability p,, = Pr{Yfm +
)A/fl} as a function of precision.

Theorem 3.2 (Probabilistic Bound).
Given Bx, Bp, w, and b, the upper bound on the mismatch
probability p,, is given by:

1 1
< A2||WIPE | ————
P —24( =l wll [|WTX+b|2}
X|[[*+1
azp | XL 9
27 [leX+b|2D ©

where X denotes the random variable of the dataset. Note
that the statistics (i.e., the expected values in (9)) are calcu-
lated empirically.

Proof. The main idea is to consider the mismatch event for
one datapoint and upper bound its probability using Cheby-
shev’s inequality. The law of total probability is then used to
obtain the upper bound over the whole dataset. For details,
please see [11]. U

Theorem 3.2 can be reformulated to obtain the lower
bound on precision to achieve a target worst-case mismatch
rate. It can also be extended to obtain the upper bound on the
actual classification accuracy of the fixed-point realization as
follows:

Theorem 3.3.
The fixed-point probability of error is upper bounded as fol-
lows:

Pe < 1+ min(pysr, pm) — max(pyi, pm)- (10)

where pg; = Pr{f/fl = Y} denotes the probability of detec-
tion in floating-point.

Proof. Basic laws of probability theory were used. For de-
tails, please see [11]. O

3.2. Weight Update Block Analysis

In the preceding discussion, w is the converged weight vector
of an infinite-precision algorithm. In practice, it is standard
to first implement a floating-point algorithm with desirable
convergence properties and then to quantize so as to keep the
convergence behavior unaltered.

The upcoming setup assumes without loss of generality
that the floating-point convergence of SGD in the context of
SVM (4) is obtained for A = 1 and some small value of
(typically a negative power of 2)

Our next result ensures that the non-zero update term in
(4) is represented correctly during training in spite of weight
update quantization.

Theorem 3.4.
The lower bound on the weight update precision Byy in order
to ensure full convergence is given by:

Bw > Bx — logy (7). (11

Proof. The idea is to prevent the updates from adding addi-
tional quantization. For details, please see [11]. O

The setup of Theorem 3.4 is quite conservative. In fact,
it is possible to sometimes break the bound in (11) and still
obtain satisfactory convergence behavior [11]. Two particular
cases are to be noted. If Byy = 1 — log,(7y), then we obtain a
sign-SGD behavior only for negative updates. This is because
only the sign bit of the input data is retrieved after truncation
at the end of the update. Similarly, if Byy = — log,(7y), then
we still obtain a sign-SGD behavior, but the effective step-size
doubles due to truncation.

4. EXPERIMENTAL RESULTS

4.1. Classification Accuracy and Convergence

In this section, we validate our analytical results based on the
UCI Breast Cancer dataset [14]. For fixed-point classification
with B = 6, Fig. 2 (a) shows that Bx > 5 is sufficient
to achieve a target classification probability of p. < 0.06.
This is consistent with the analytical values determined by the
geometric bound (8) and the probabilistic bound (9): Bx = 4
and Bx = 5, respectively.

Fig. 2 (b) shows the convergence curve of the average loss
function of SVM as described in (3) for various weight update
block precisions Byy. The minimum precision given by (11)
is Byy = 11 when v = 275 and Bx = 6 chosen to be con-
sistent with the bounds shown in Fig. 2(a). We note that the
fixed-point convergence curve tracks the floating-point curve
very closely. We also show convergence curves for precisions
By = 10,7,6, and 5. The curves are similar to the floating-
point curve though with an observable loss in the accuracy
for lower precisions. Further analysis explaining this loss in
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Fig. 2: Experimental results for the Breast Cancer dataset: (a)
fixed-point classifier simulation (FX sim), probabilistic upper
bound (UB), and geometric bound (GB) for Br = 6, and (b)
convergence curves for fixed-point (Br = 6 and Bx = 6)
and floating-point (FL sim) SGD training (y = 27° and \ =
1).

accuracy can be found in [11]. Note: the initial faster conver-
gence but eventual loss in accuracy when By = 5 is because
it corresponds to By = — log,(y) meaning a sign-SGD be-
havior with double the step size as discussed in Section 3.

4.2. Energy Consumption

We employed the energy-delay models in Section 2.2 to es-
timate the energy consumption of the SVM-SGD architec-
ture (Fig. 1) when processing the Breast Cancer dataset. Our
methodology is the same as the one in [10] but it uses a 45 nm
semiconductor process parameters. This methodology is use-
ful for estimating the benefits of precision reduction without
a time-consuming and laborious ASIC design process. The
model parameters obtained through circuit simulations of a
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Fig. 3: Energy savings using minimum precision (Br = 6,
Bx =5, By = 10) for p,, < 0.01, compared to 2 b higher
precision (B = 8, Bx = 7, Byy = 12) and uniform preci-
sion assignment of 16 b (Br = 16, Bx = 16, By = 16).

full adder and their values can be found in [11]. Based on
these parameters, we evaluate the energy consumption in (6).
Fig. 3 shows the energy consumption of the architecture as
a function of supply voltage for different precisions in order
to achieve p,,, < 0.01. An architecture that employs 16 b for
all variables is chosen as reference as recent works on fixed-
point learning have employed commercial 16 b digital signal
processors [1]. As discussed in [10], the trade-off between
leakage and dynamic energy (the two terms in (6)) leads to
the well known minimum energy operating point (MEOP) for
each curve. As shown in Fig. 3, the precision assignment us-
ing (9)-(11) results in 5.3 x energy savings at the MEOP over
a 16 b fixed-point implementation.

5. CONCLUSION

In this paper, we presented analytical bounds on the preci-
sions of data, weight vector, and weight update block for the
SVM-SGD algorithm. These bounds are closely related to
performance metrics such as the classification accuracy and
mismatch probability. Moreover, we quantified the impact
of precision on the energy cost of inference in a commercial
semiconductor process technology using circuit analysis and
models. We observed significant energy savings when assign-
ing precision at the lower bounds as compared to prior work.
Using our results, designers of fixed-point realization can ef-
ficiently determine precision requirements analytically. Fu-
ture work includes developing a similar fixed-point analysis
of the popular Deep Neural Networks (DNN). Such networks
tend to be highly complex. A systematic study of precision
requirements will be extremely valuable.
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