
MULTI-RATE POLAR CODES FOR SOLID STATE DRIVES

Yi Zhong, Chun Zhang,∗

Institute of Microelectronics
Tsinghua University, Beijing China

Chenrong Xiong, Zhiyuan Yan†

Department of ECE
Lehigh University, Bethlehem, PA USA

ABSTRACT

As solid state drives (SSDs) are gradually replacing hard disk
drives, error correction is critical to SSDs since NAND flash
has deteriorating reliability over their life span. Existing error
correction codes suffer from limited error correction capabil-
ity or error floor issues. Polar codes are promising for SSDs
since they are theoretically proven optimal codes and have
good error floor behavior. In this paper, we first design multi-
rate polar codes for SSDs, and then implement encoder and
decoder that simultaneously support multiple rates in FPGA.
Multi-rate polar codes provide a good tradeoff between reli-
ability and efficiency. Finally, we use an FPGA emulation
platform to evaluate the error performance of our polar codes,
and examine their error floor behavior.

Index Terms— Solid state drive, error correction codes,
polar codes, FPGA emulator

1. INTRODUCTION

Although NAND flash memory has high capacity and fast
cell access, its storage reliability is an important problem that
needs to be alleviated. When the number of program-erase
(P/E) cycles increase, the Inter-poly oxide layer in memory
will be gradually destructed so that it becomes increasingly
hard to trap electrons, leading to growing crossover proba-
bility. Various error correction codes (ECCs) have been con-
sidered for this problem, but existing ECCs either have lim-
ited error correction capability or suffer from error floor prob-
lems [1].

Recently proposed polar codes [2] are good candidates as
error correction codes for SSDs for two reasons. First, polar
codes were proved as capacity-achieving codes. Also, polar
codes do no suffer from error floor problems [3].

In this paper, we first design multi-rate polar codes for
SSDs, and then implement encoder and decoder that simul-
taneously support multiple rates in FPGA. Multi-rate polar
codes are suitable for SSDs, because NAND flash has deteri-
orating reliability over their life span. Using multi-rate polar

∗This project is partly sponsored by the National High Technol-
ogy Research and Development Program of China (863 Program, No.
2015AA016701).
†This work was supported in part by the National Science Foundation

under Grant ECCS-1509674.

codes provides a good tradeoff between reliability and effi-
ciency (redundancy). In early stages, the crossover probabil-
ity is lower, and hence polar codes with higher code rates can
meet the error correction requirements. When the number of
P/E cycles increases, correction ability of high rate codes is
no longer enough, and instead lower rate codes are necessary
in late stages.

We also use an FPGA emulation platform to evaluate the
error performance of our polar codes, and examine their error
floor behavior. Our results show that our polar codes provide
the desired tradeoff between reliability and redundancy, and
that they do not have error floor when bit error rates go down
to 10−12. The FPGA platform also sets our work apart from
prior works in this area (see, for example, [4]). Prior works
such as [4] rely on numerical simulations for error perfor-
mance evaluation and cannot examine the error performance
for very low error rates. Our FPGA platform allows us to
evaluate the error performance of polar codes at much lower
bit rate than [4].

The remainder of this paper is organized as follows. In
Section 2, the encoder and decoders of polar codes are briefly
reviewed. In Section 3, we present the design details of multi-
rate polar codes. In Section 4, we present our hardware im-
plementation of the encoder and decoder, describe our FPGA
emulation platform, and present the error performance of our
polar codes. In Section 5, we make some conclusions and
discuss some future work.

2. REVIEW

We now briefly review the encoding and decoding operations
of polar codes, as they will be discussed later.

For anN -bit (N = 2n) binary dataword (u0, u1, · · · , uN−1),
denoted as uN−1

0 , N − K bits are zeros (called frozen bits)
andK bits are information bits. The codeword corresponding
to uN−1

0 , denoted as xN−1
0 is computed as

xN−1
0 = uN−1

0 BNF
⊗n, (1)

where BN is the N × N bit-reversal permutation matrix,
F = [1 0

1 1], and F⊗n is the n-th Kronecker power of F . The
(N,K) polar code is said to have a rate of K/N .

The successive cancelation (SC) decoding algorithm [2]
decodes the dataword uN−1

0 one by one from u0 to uN−1. If

1128978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

an encoding bit is a frozen bit, it is set to zero. Otherwise,
the channel transition probability associated with this bit is
calculated and then ML decoding is performed for this bit
based on the channel transition probability.

Instead of making a hard decision for each information
bit of uN−1

0 , the successive cancelation list (SCL) decoding
algorithm [5] generates two paths in which the information
bit is assumed to be 0 and 1, respectively. When the number
of paths is greater than a predefined list size L, the L most
reliable paths are kept. At the end of the decoding procedure,
the most reliable path is chosen as the decoding result.

The CA-SCL decoding algorithm [6] is used to decode the
CRC-concatenated polar codes. It improves the error perfor-
mance of polar codes at the expense of a smaller code rate.
In the CA-SCL decoding algorithm, the cyclic redundancy
check (CRC) is used to select the final decoding result. If
there is at least one path satisfying the check, the most likely
CRC-valid path is chosen. Otherwise, the most reliable path
is selected.

3. MULTI-RATE POLAR CODES

3.1. SSD set-up

As shown in Fig. 1, SSDs generally consist of micro control
unit (MCU), ECC, NAND flash memory array and interfaces,
and these components form a complete microsystem. For
data transmission, individual modules are interconnected by
an AXI bus, a direct data path between USB 3.0, SATA, PCIe
interfaces and NAND flash memory array. ARM (Advanced
RISC Machines) is chosen as main control chip, which con-
trols the timing of data transmission by sending specific in-
structions. When data is written to the SSD from USB 3.0,
SATA, PCIe interfaces, data is stored into an asynchronous
FIFO (AFIFO) under the control of DMA (Direct Memory
Access) through the data bus. After encoded in the ECC mod-
ule, data is programmed into flash memory through the NFC
(NAND flash controller).

ARM cpu

DMA ECCAFIFO AFIFO

Nand

Flash

Con-
troller

NAND

Flash

Array

AXI4

Data

 Bus

USB 3.0

SATA

PCIe

Fig. 1: SSD system configuration

3.2. Multi-rate polar codes

Due to the special construction of NAND flash memory, the
data size of read and program processes must be aligned with
the page size, which means that at least one page of data is
read out during one read process. Hence the block length of
polar codes is also determined based on the page size.

In our work, we assume a page size of 4 KBytes and
choose a block length of 8192 bits for our polar codes. Thus,
each page stores four codewords. The primary reason for our
choice of the block length is hardware implementation. Since
we implement the ECC on FPGA (more details in Section 4),
the block length is also limited by the capacity of the FPGA
board. Of course, our work can be extended to polar codes of
longer block lengths, such as 215.

NAND flash memory has a finite number of P/E cycles.
Beyond this limit, due to oxide wear-out, the electrons may
leak, and hence the information stored in memory cells is no
longer reliable. Therefore, the crossover probability is dif-
ferent over the lifetime of SSDs. To ensure the reliability of
the store information as well as to reduce redundancy, ide-
ally different code rates should be used in different life stages
of SSDs. In early stages, the crossover probability is lower,
and hence polar codes with higher code rates can meet the er-
ror correction requirements. When the number of P/E cycles
increases, correction ability of high rate codes is no longer
enough, and instead lower rate codes are necessary in late
stages.

To generate our polar codes of length 8192, we use the
degrading merge algorithm in [7], which can efficiently con-
struct polar codes. To ensure that the memory requirement
does not grow exponentially with code length, this construc-
tion method works for any specified memory limit. This algo-
rithm consists of degrading quantization and upgrading quan-
tization, and a parameter µ denotes the approximations of
the quantization process. We implement this algorithm and
choose µ = 256 to generate our codes. For the binary sym-
metric channel, we use a set of crossover probabilities mea-
sured from 16nm NAND SLC flash memory at different pro-
gram/erase cycles [8]. When the number of program/erase
cycles ranges from 5 to 10000, the crossover probability in-
creases from 1.263 × 10−4 to 6.35 × 10−4. We picked the
crossover probability for 6000 program/erase cycles, which is
0.0004, and use this crossover probability to generate polar
codes of different rates. The code rate is a tradeoff between
error correction performance and efficiency. Lower rate codes
have better error correction capability but need more redun-
dancy, while higher rate codes are just the opposite. Thus,
multi-rate codes are necessary over the life time of SSDs. Us-
ing the crossover probability 0.0004, we have obtained three
polar codes, (8192, 7373), (8192, 7618), and (8192, 7700)
codes, which correspond to rates of 0.9, 0.93, and 0.94, re-
spectively. We note that all three have rates at least 0.9, which
is often assumed for storage systems.

1129

4. HARDWARE IMPLEMENTATIONS AND
PERFORMANCE EVALUATION

4.1. Hardware implementations of Encoder and Decoder

To support multi-rate polar codes, the encoder and decoder
need to work for polar codes with different rates.

The encoding process of polar codes is carried out as in
Eq. (1). This encoding process can be implemented by re-
cursively using a basic unit of two operations: u1 ⊕ u2 =
x1;u2 = x2. This encoding process is the same for any code
rate with the same length. The details of the encoder are omit-
ted henceforth.

Our decoder is based on a high throughput CA-SCL de-
coder proposed in [9]. The decoder in [9] performs list decod-
ing on a binary tree, whose nodes characterize the structure of
polar codes. In the hardware implementation of the decoder
in [9], the information about the nodes of the tree and the
decoding schedule are stored in the ROMs. For polar codes
with different rates but the same length, the hardware imple-
mentation of our decoder is the same, and the only difference
is the node information and decoding schedule stored in the
ROMs. Hence, the node information and decoding schedule
of all three codes are stored in the ROMs, and they are re-
trieved accordingly.

We implemented the encoder and decoder in FPGA using
a Virtex-7 FPGA VC709 board. We chose a list size of 4
for the CA-SCL decoder. There are two clock domains in our
design: the clock rate in the encoder is 166.64 MHz, while the
clock rate in the decoder is 41.66 MHz. Based on this clock
rate, the throughput of the codec is 391Mbps. The hardware
utilized by the encoder and decoder are detailed in Table 1.

Table 1: FPGA implementation results of encoder and de-
coder in our design

encoder CA-SCL decoder resource usage
LUTs 13,273 161,469 40.3%
FFs 17,758 28,784 5.37%

BRAMs 0 5,823 11.01%

4.2. FPGA Emulation Platform

To evaluate the error performance of polar codes, especially
at very low bit error rates, numerical simulations are too
time consuming. Hence, we adapt an FPGA emulation
platform we developed in prior work [10]. One difference
between the FPGA platform in [10] and this work is the
FPGA board. The platform in [10] uses a Genesys-2 Kintex-
7 FPGA development board with a Xilinx Kintex-7TM FPGA
(XC7K325TFFG900-2), whereas the platform in this work
uses a Xilinx Virtex-7 FPGA development board with a
Xilinx Virtex-7TM VC709 (XC7VX690TFFG1761-2). This
switch was made because the latter offers more hardware

resources. The FPGA platform in this work also needs to
support multi-rate polar codes by reconfiguring its modules.
Next we describe the platform and focus on the reconfigura-
tion of different modules.

Our FPGA platform consists of CPU controller, channel
module, polar code sequence generator, encoder, decoder, and
error bit check modules, as shown in Fig. 2.

MicroBlaze
soft-core
Processor

Encoder Channel
CA-SCL
Decoder

Error Bits
Check

LCD

AXI4-Lite
Controller

Polar codes
Sequence
Generator

Fig. 2: Block diagram of our FPGA emulation platform

In our design, we use MicroBlaze as main control chip
embedded in FPGA, which is connected with other peripheral
modules by an AXI4 bus. The AXI4 bus is used to control the
peripheral modules. When we connect MicroBlaze and con-
trol registers of peripheral modules by the AXI-lite protocol,
these registers will be mapped to system memory. Values of
control registers of peripheral modules can be easily rewrit-
ten by the CPU by altering the corresponding memory. In our
performance evaluation, the crossover probability in the chan-
nel module and reconfiguration of the decoder for multi-rate
polar codes are all changed by using the AXI-lite protocol.

The polar code sequence generator module consists of
two parts, a random number generator (RNG) and a random-
access memory (RAM). For an (N,K) polar code generated
by our design, we use anN -bit binary code structure sequence
to represent the positions of frozen bits. For example, a code
structure sequence (1, 0, 0, 1, · · ·) means that bits 2 and 3 are
frozen bits and bits 1 and 4 are information bits. The infor-
mation bits used in our emulation are generated by the RNG.
We store each code structure sequence into a RAM, whose
address ranges from 0 to N −1 with 1 bit depth. This process
is controlled by software through the AXI-lite protocol. Then
the information bit generated by the RNG is stored into the
addresses whose values equal 1. After K random informa-
tion bits are produced, we get an N -bit polar code sequence.
Polar code sequence for multi-rate polar codes with the same
length can be generated by altering the frozen bit positions

1130

stored in the RAM via the AXI-lite interface.
Our FPGA emulation platform supports two channel

models, additive white Gaussian noise (AWGN) channel and
binary symmetric channel (BSC). In SSD applications, the
binary symmetric channel is mainly used to simulate NAND
flash memory, and p denotes the cell crossover probability of
flash memory. That is, a binary bit gets flipped with probabil-
ity p, and remain unchanged with probability 1− p. We use a
codeword sequence xN−1

0 as the input for the channel. Given
an output sequence yN−1

0 (y0, y1, · · · , yN−1) by the channel,
its corresponding LLR sequence is calculated by

LLRi =

{
log 1−p

p if yi = 1

log p
1−p if yi = 0,

(2)

where i = 0, 1, · · · , N − 1. These LLRs are the input of
the following decoding process. The registers storing the
crossover probability of channel are connected with the AXI-
lite interface. Thus, the performance for different P/E cycles
of SSDs can be simulated by altering the values of these
registers.

4.3. Simulation Results

For the three polar codes, (8192, 7373), (8192, 7618), and
(8192, 7700) codes, their bit error rates (BERs) and frame er-
ror rates (FERs) are compared in Fig. 3. As we see in Fig. 3,
a higher rate code has worse performance than a lower rate
code. Each point in Fig. 3 is obtained by accumulating at
least 100 frames in error. The emulation process is some-
what time-consuming. For instance, for the rate-0.94 code
over the BSC channel with a crossover probability 0.00015,
to accumulate 100 error frames it needs to decode a total of
7,504,431,955 frames. Since it takes 3,485 clock cycles to
decode each frame, with a clock rate of 41.66 MHz in the de-
coder, this one data point needs at least 174 hours. In practice,
more FPGA boards would reduce the emulation time. Due to
the long time needed to accumulate enough frames in error,
we focus on the code with the highest rate, the code with rate
0.94, for very low bit error rates, to examine its error floor
behavior. Fig. 3 shows that the code with rate 0.94 has no
error floor even when the BER gets as low as 10−12. Since
the performance of the two codes with rate 0.9 and 0.93 is
probably no worse than that of the code with rate 0.94, we
conjecture that the two codes with lower rates have no error
floor when the BER gets as low as 10−12. We will verify this
in our future work.

In Fig. 3, we also compare the bit error rate of our polar
code with rate 0.94 with that of a (35840, 33792) LDPC code
for SSDs, which is generated from [11]. The two codes have
roughly the same rate, but the block length of the LDPC code
is much longer. Since the error performance of polar codes
improves with their block length in general, the polar code
is somewhat at a disadvantage. We see that the LDPC code
shows an error floor, starting at bit error rate of 10−10. In

00.511.5

Crossover Probability ×10
-3

10
-15

10
-10

10
-5

10
0

E
rr

o
r

P
e

rf
o

rm
a

n
c
e

FER 0.94

BER 0.94

FER 0.93

BER 0.93

FER 0.90

BER 0.90

BER LDPC

Fig. 3: Error performance of polar codes of different rates and
a (35840, 33792) LDPC code

contrast, the polar code shows no sign of an error floor when
the bit error rate goes down to 10−12. This demonstrates the
advantage of polar codes in error floor, which is significant
for hard drives due to their stringent requirement on bit error
rates.

5. CONCLUSION AND FUTURE WORK

In this paper, we first design multi-rate polar codes for SSDs,
and then implement encoder and decoder that simultaneously
support multiple rates in FPGA. Finally, we use an FPGA em-
ulation platform to evaluate the error performance of our po-
lar codes, and examine their error floor behavior. Our results
show that our polar codes have good error floor behavior.

The error performance of the polar codes can be improved
by using more sophisticated decoders, such as the CA-SCL
decoder with a greater list size. Of course, using greater block
length will likely lead to performance improvement. Both
approaches will impact the decoder complexity and hence its
hardware implementation. We will explore these in our future
work. Also, we have used the binary symmetric channel to
model NAND flash memory so far in our work. In our future
work, we will use actual NAND flash memory in our platform
for a more realistic performance evaluation.

1131

6. REFERENCES

[1] Kai Zhao, Wenzhe Zhao, Hongbin Sun, Tong Zhang,
Xiaodong Zhang, and Nanning Zheng, “LDPC-in-SSD:
making advanced error correction codes work effec-
tively in solid state drives,” in Usenix Conference on
File and Storage Technologies, 2013, pp. 243–256.

[2] Erdal Arikan, “Channel polarization: A method for
constructing capacity-achieving codes for symmetric
binary-input memoryless channels,” IEEE Transactions
on Information Theory, vol. 55, no. 7, pp. 3051–3073,
2009.

[3] Ali Eslami and Hossein Pishro-Nik, “On finite-length
performance of polar codes: Stopping sets, error floor,
and concatenated design,” IEEE Transactions on Com-
munications, vol. 61, no. 3, pp. 919–929, 2012.

[4] Yue Li, Hakim Alhussien, Erich F Haratsch, and Anx-
iao Andrew Jiang, “A study of polar codes for mlc nand
flash memories,” in 2015 International Conference on
Computing, Networking and Communications (ICNC).
IEEE, 2015, pp. 608–612.

[5] Ido Tal and Alexander Vardy, “List decoding of polar
codes,” IEEE Transactions on Information Theory, vol.
61, no. 5, pp. 2213–2226, 2015.

[6] Kai Niu and Kai Chen, “CRC-aided decoding of polar
codes,” IEEE Communications Letters, vol. 16, no. 10,
pp. 1668–1671, 2012.

[7] Irina Tal and Alexander Vardy, “How to construct polar
codes,” IEEE Transactions on Information Theory, vol.
59, no. 10, pp. 6562–6582, 2013.

[8] Private Communication with Yue Li, ,” .

[9] J. Lin, C. Xiong, and Z. Yan, “A high throughput list de-
coder architecture for polar codes,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 24,
no. 6, pp. 2378–2391, 2016.

[10] Chenrong Xiong, Yi Zhong, Chun Zhang, and Zhiyuan
Yan, “An FPGA emulation platform for polar codes,”
in 2016 IEEE Workshop on Signal Processing Systems
(SiPS). IEEE, 2016, pp. 1–6.

[11] Yishan Zhang, Chun Zhang, Zhiyuan Yan, Shuang
Chen, and Hanjun Jiang, “A high-throughput multi-rate
LDPC decoder for error correction of solid-state drives,”
in 2015 IEEE Workshop on Signal Processing Systems

(SiPS). IEEE, 2015, pp. 1–6.

1132

