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ABSTRACT

The aim of this work is the estimation of respiratory flow from lung

sound recordings, i.e. acoustic airflow estimation. With a 16-channel

lung sound recording device, we simultaneously record the respira-

tory flow and the lung sounds on the posterior chest from six lung-

healthy subjects in supine position. For the recordings of four se-

lected sensor positions, we extract linear frequency cepstral coef-

ficient (LFCC) features and map these on the airflow signal. We

use multivariate polynomial regression to fit the features to the air-

flow signal. Compared to most of the previous approaches, the pro-

posed method uses lung sounds instead of trachea sounds. Further-

more, our method masters the estimation of the airflow without prior

knowledge of the respiratory phase, i.e. no additional algorithm for

phase detection is required. Another benefit is the avoidance of time-

consuming calibration. In experiments, we evaluate the proposed

method for various selections of sensor positions in terms of mean

squared error (MSE) between estimated and actual airflow. More-

over, we show the accuracy of the method regarding a frame-based

breathing-phase detection.

Index Terms— lung sounds, multichannel recording device,

acoustic airflow estimation, linear frequency cepstral coefficients

(LFCCs), multivariate polynomial regression

1. INTRODUCTION

In lung sound research, the simultaneous measurement of airflow in

addition to the lung sounds is essential. First of all, the airflow signal

enables the distinction between inspiratory and expiratory phases.

Furthermore, it provides information about the current state of the

lung. The real-time airflow feedback for the subject further sup-

ports a controlled measurement procedure. The most common de-

vice for airflow measurement is the spirometer, which is suitable

for short-time airflow measurements, but not for continuous airflow

monitoring. Alternatives, like nasal cannula and/or resistance bands,

enable a continuous airflow monitoring, but are not as accurate [1].

Therefore, acoustic airflow estimation (AAE) facilitates the short-

time recording of lung sounds by making the spirometer needless,

and it can be an accurate alternative for continuous airflow monitor-

ing.

In most of the existing approaches, the acoustic airflow estima-

tion is considered as a twofold task: the breathing phase detection
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(BPD) and the airflow estimation. For the BPD the difference of

lung sound intesity between inspiratory and expiratory phase can be

used [2]. Due to the direct correlation of trachea sounds and air-

flow, most of the previous approaches for AAE are based on tra-

chea sounds instead of lung sounds [1, 3, 4, 5]. For the existing

approaches, we observe the following limitations: a need for cali-

bration, no multichannel information is used (only based on single

channel trachea/lung sound recording) and heart sound interference

is partially ignored.

Based on the afore mentioned limitations, our motivation is to

find a single model for AAE, without the need for an additional

BPD-algorithm. Furthermore, we are interested in a calibration free

approach. Therefore, we recorded lung sounds in supine position on

the posterior chest of six subjects at several airflow rates with our

previously developed 16-channel lung sound recording device [6].

For the lung sound recordings, we extract LFCC-features and map

these to the corresponding airflow signal. We use multivariate poly-

nomial regression analysis to fit the features to the airflow signal for

the recordings of the subjects. In experiments, we investigate several

sensor selections (sensor sets), which differ in number and position.

Furthermore, we examine the impact of heart sounds on the accu-

racy. We investigate also the performance of the proposed method

for BPD.

We organized the paper as follows: Section 2 describes the data

acquisition, the recording material and the acoustic airflow estima-

tion model. In Section 3, we show experimental results, which we

further discuss in Section 4. Section 5 concludes the paper.

2. METHOD

2.1. Data Acquisition

For the recordings, we used a multichannel lung sound recording

device, which includes the feature of simultaneous airflow recording

[6]. It consists of a multichannel lung sound recording front-end (see

Figure 1) and a pneumothachograph.

The multichannel lung sound recording front-end is a foam pad

with a cover of artificial leather, a similar construction as the Stetho-

graphics STG 16 [7]. We arranged 16 lung sound transducers (LSTs)

on the topmost layer of the pad with a fixed pattern, which is com-

parable to the one proposed in [8]. For the LST-design, we applied

the approach with air-coupled electret-condenser microphones [9].

Therefore, we modified a Littmann Classic II chest piece. The foam

pad enables the recording of lung sounds in the supine position, per-

formed on an examination table with the pad placed under the back

of the patient.

For the analogue pre-filtering, pre-amplification, and digitiza-

tion of the LST signals, we use standard audio recording equipment.
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The sampling frequency for the lung sound signals is fs = 16 kHz

and the resolution is 24 bit. Before analog-to-digital conversion, we

filter the LST-signal with a Bessel high-pass filter with a cut-off fre-

quency of fc = 80 Hz and a slope of 24 dB/oct.

The pneumotachograph is a Schiller SP 260, which is connected

via the USB port. The sampling frequency for the airflow signal is

fs = 400 Hz.

Fig. 1. Multichannel recording front-end of the lung sound recording

device [6]. 16 lung sound transducers are distributed on the foam

pad. The center line represents the spine.

To calibrate the recording device, we used a Brüel & Kjær sound

calibrator Type 4231. We adjusted the microphone preamplifiers of

the LSTs to reach the same signal level for the sound calibrator signal

(sinusoidal waveform with a frequency of f = 1 kHz and a sound

pressure level of 94 dB).

2.2. Subjects and Materials

We recorded lung sounds over the posterior chest of six lung-healthy

subjects at airflow rates of 0.3, 0.7, 1.0, 1.3 and 1.7 l/s. During the

recording the subjects wore a nose clip and held the pneumotacho-

graph with both hands. We instructed the subjects to breath steadily

during inspiration at the given airflow rates, with natural breathing

during expiration, by providing a real-time feedback for the airflow

rate. For the orientation of the subject on the pad, we used a defined

distance d ≈ 7 cm between the 7th cervical vertebra (C7) and the

center line of the topmost row of sensors. For each subject, we have

16-channel lung sound recordings at five different airflow rates, with

3-8 breathing cycles within 30 seconds, respectively. The subjects

were six male volunteers, with no diagnosed lung diseases. The av-

erage age of the subjects was 27 ± 1 years, the weight 76 ± 2 kg,

the height 180 ± 7 cm and the body mass index 24 ± 2. Figure

2 shows examples of phonopneumograms (overlapping illustration

of lung sounds and airflow signals) for one subject, recorded with

Fig. 2. Phonopneumograms of sensor 12 from one subject for dif-

ferent maximum inspiratory airflow values (0.3, 0.7, 1.0, 1.3 and

1.7 l/s).

Legend: – Lung Sound Recording; – Airflow of Pneumotacho-

graph

sensor 12. For the experiments in Section 3.2, we manually labeled

the sections of the lung sound recordings contaminated with heart

sounds.

2.3. Acoustic Airflow Estimation based on Regression

For the lung sound recordings, we extract LFCC-features and map

these to the airflow signal. We compute the LFCC-features by fram-

ing the lung sound signal of each sensor with a duration of Tw =

25 ms and a 75 % overlap between adjacent frames. We multiply

each frame with a Hamming window. The number of filter bank

channels is M = 5. For each frame, we compute four cepstral coef-

ficient C = 4. The feature vector for multivariate polynomial regres-

sion is obtained by stacking the cepstral coefficients of the selected

sensors. We map each vector to the value of the corresponding down-

sampled airflow signal (new sampling frequency fs,new = 160 Hz).

We use multivariate polynomial regression analysis to find a 3rd or-

der polynomial fit between the features and the airflow signal. We

include the cross-terms in the regression model. To smooth the out-

put of the regression model, we use a low-pass filter with a cut-off

frequency fc = 3 Hz.

3. RESULTS

3.1. Acoustic Airflow Estimation

Our acoustic airflow estimation approach is based on the spectral in-

formation of the locally varying lung sounds, i.e. lung sounds differ

for each sensor position. Therefore, we use bronchial and vesicular

lung sounds. We record bronchial lung sounds over the large air-

ways approximately at the 3rd intercostal space (Sensors 2 and 3).

The vesicular lung sound is recorded over the lung periphery ap-

proximately at the 8th intercostal space (Sensor 9 and 12). For the

experiments within this section, we consider a frequency band with

a lower cut-off frequency fL = 100 Hz and an upper cut-off fre-

quency fH = 1000 Hz, i.e. we extract the LFCCs, as described in

Section 2.3, for this frequency band.
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3.1.1. Selection of Sensors with Leave-One-Out Cross-Validation

Table 1 shows the results in terms of MSE between estimated and ac-

tual airflow for different sets of sensors (cf. Figure 1). We report re-

sults seperately for different recordings from shallow to deep breath-

ing (maximum inspiratory airflow values from 0.3 to 1.7 l/s). There-

fore, we perform leave-one-out cross-validation with the recordings

of five subjects for training, and the recordings of the remaining sub-

ject for evaluation. The training material consists of 10 seconds from

Maximum Inspiratory Airflow Value

Sensors 0.3 l/s 0.7 l/s 1.0 l/s 1.3 l/s 1.7 l/s

{2,3} 0.16±0.22 0.19±0.24 0.20±0.26 0.35±0.56 0.63±1.23

{9,12} 0.17±0.22 0.17±0.23 0.13±0.19 0.21±0.34 0.45±0.97

{2,9} 0.15±0.20 0.18±0.26 0.11±0.14 0.17±0.25 0.31±0.52

{3,12} 0.16±0.22 0.16±0.23 0.15±0.23 0.22±0.42 0.55±1.37

{2,3,9,12} 0.14±0.19 0.14±0.16 0.11±0.14 0.17±0.27 0.43±0.95

Table 1. Acoustic airflow estimation for different sensor combina-

tions between shallow and deep breathing. The MSE between esti-

mated and actual airflow is reported.

each of the recordings at the different airflow rates for each subject.

This duration covers at least one full breathing cycle. The material

for evaluation consists of 20 seconds, respectively. The results for

sensor set {2,3,9,12} are illustrated in Figure 3 for all test subjects

(S1-S6) independently.

Fig. 3. Acoustically estimated and actual airflow waveforms for all

test subjects (S1-S6) between shallow and deep breathing (0.3 −
1.7 l/s). The selected sensor set is {2,3,9,12}.

Legend: – Airflow of Pneumotachograph; – Acoustic Airflow Es-

timation

3.1.2. Single Subject for Training and Evaluation

In this section, we investigate the performance of the AAE method

performing training and testing on data of the same subject. We use

10 seconds of the recorded material from one subject for training and

the remaining 20 seconds for evaluation. The selected set of sensors

is {2,3,9,12}. Table 2 shows the results in terms of MSE between

estimated and actual airflow for each of the subjects independently.

Maximum Inspiratory Airflow Value

Subject 0.3 l/s 0.7 l/s 1.0 l/s 1.3 l/s 1.7 l/s

S1 0.37±1.6 0.12±0.16 0.06±0.18 0.05±0.07 0.06±0.08

S2 0.08±0.12 0.15±0.19 0.08±0.12 0.14±0.19 0.24±0.35

S3 0.21±0.29 0.04±0.06 0.04±0.06 0.06±0.11 0.05±0.07

S4 0.07±0.09 0.04±0.07 0.03±0.07 0.05±0.09 0.09±0.10

S5 0.07±0.10 0.04±0.08 0.03±0.07 0.02±0.04 0.12±0.14

S6 0.12±0.16 0.03±0.07 0.02±0.06 0.02±0.06 0.07±0.15

Table 2. Acoustic airflow estimation performing training and testing

on data of the same subject. The MSE between estimated and actual

airflow is reported.

3.1.3. Effect of Heart Sounds

Within this section, we investigate the influence of heart sounds on

the regression performance. Our recording setup includes an ana-

logue high-pass filter with a cut-off frequency of fc = 80 Hz (cf.

Section 2.1) to filter out low frequency noise. However, heart sounds

are still contaminating the lung sound recordings in the lower fre-

quency range, mainly up to a frequency of f ≈ 200 Hz [10]. There-

fore, we compared three setups, differing either in the considered

bandwidth or the presence of heart sounds:

• Setup 1: Basic setup, where we consider the frequency band

between 100 and 1000 Hz, as in the previous sections.

• Setup 2: We consider the heart sound free frequency range

between 400 and 1000 Hz, i.e. we extract the LFCCs, as

described in Section 2.3, for this frequency band.

• Setup 3: As Setup 1, but we use only frames free from heart

sounds (cf. Section 2.2) for training and evaluation.

For the experiments, we use the recordings of one subject (S2). For

each setup, we use 1600 frames (corresponds to 10 seconds of the

recordings) for training and 1600 independent frames for testing, for

each of the recordings at different airflow rates. The selected set of

sensors is {2,3,9,12}. For the experiments within this section, we do

not smooth the output of the regression model. In Table 3, we show

the results for the three setups for the different maximum inspiratory

airflow rates.

Maximum Inspiratory Airflow Value

Setup 0.3 l/s 0.7 l/s 1.0 l/s 1.3 l/s 1.7 l/s

1 0.10±0.18 0.24±0.36 0.18±0.44 0.28±0.61 0.39±0.70

2 0.09±0.18 0.24±0.43 0.17±0.38 0.36±0.88 0.48±0.85

3 0.10±0.17 0.18±0.31 0.19±0.55 0.23±0.56 0.37±0.76

Table 3. Influence of heart sounds on acoustic airflow estimation.

We compare the results for three different setups. The MSE between

estimated and actual airflow is reported.

3.2. Breathing Phase Detection

We investigate the performance of the proposed method regarding a

frame-based breathing phase detection, i.e. the distinction between

inspiratory and expiratory phase. Table 4 shows the experimental

results by means of sensitivity, specificity and accuracy. The sen-

sitivity measures the proportion of frames that are correctly identi-

fied as expiratory phase, i.e. positiv airflow values. The specificity
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measures the proportion of frames that are correctly identified as in-

spiratory phase, i.e. negative airflow values. Figure 4 illustrates the

correct (blue area) and incorrect (red area) breathing phase detec-

tion. The setup is the same as the one described in Secion 3.1.1 with

the sensor set {2,3,9,12}.

Maximum Inspiratory Airflow Value

Measures 0.3 l/s 0.7 l/s 1.0 l/s 1.3 l/s 1.7 l/s

Sensitivity (%) 13 68 86 89 91

Specificity (%) 97 98 98 98 90

Accuracy (%) 63 88 93 95 91

Table 4. Breathing phase detection from shallow to deep breathing

in [%].

Fig. 4. Breathing phase detection (BPD) illustrated with the acous-

tic airflow estimation waveform for all test subjects (S1-S6), from

shallow to deep breathing. Legend: – True BPD; – False BPD

4. DISCUSSION

In Secion 3.1.1, we investigate the influence of the selected sen-

sors. The sensor set {2,3} uses only bronchial sounds and the

sensor set {9,12} only vesicular lung sounds. Both sensor sets,

{2,9} and {3,12}, use bronchial and vesicular lung sounds limited

to one hemithorax, respectively. According to Table 1, we obtain

the best results with the sensor set {2,3,9,12}. The sensor set over

the left hemithorax {3,12} performs poorer than the one over the

right hemithorax {2,9}. This might be explained by the stronger

contamination with heart sounds on the left side. Figure 3 illustrates

the acoustically estimated airflow for the sensor set {2,3,9,12}. In

general, we see a good performance for high airflow values dur-

ing inspiration, unlike for high airflow values during expiration,

especially for subjects S1 and S2. This results from the training

material, where airflow rate during inspiration is held constant at

the given values, while during expiration breathing is natural (cf.

Section 2.2). The poor performance for low airflow values results

from the low signal-to-noise ratio of the corresponding lung sound

recordings.

We investigate the performance of the AAE method performing

training and testing on data of the same subject in Section 3.1.2.

This can be seen as a calibration step. In Table 2, we observe small

MSE-values, distinclty smaller than in Table 1, i.e. the intro-subject

evaluation. The high MSE-value for the recordings with a maximum

inspiratory airflow value of 0.3 l/s from subject S1 is due to the

contamination of the evaluation material, i.e. the presence of bowel

sounds in the lung sound recording of sensor 9.

From the results in Table 3, no substantial differences between

the three setups are observable. By high-pass filtering the lung sound

(Setup 2), we lose the range with the highest signal-to-noise ratio,

because of signal power decrease with increasing frequency [10].

The results in Table 4 show a high accuracy regarding the breath-

ing phase detection for high airflow values. We see that the values

for the specificity are close to 100 %, whereas the values for the sen-

sitivity are distinctly lower. According to Figure 4, the relatively low

sensitivity at higher airflow values is caused by the false detection of

the beginning and/or the end of the inspiratory phase (red areas). As

already discussed above, the poor performance at low airflow rates is

caused by the low signal-to-noise ratio of the lung sound recordings.

A benefit of our acoustic airflow estimation method is its frame-

wise breathing phase detection, where no information from previous

frames and/or the information about the first phase is needed. This

makes the detection robust against swallowing, apnea and coughing,

meaning that only the contaminated frames are detected incorrectly.

The limitations of our experiments are the small number of

subjects and the lack of metadata, such as age, body height, body

weight, gender, etc. Furthermore, we cannot guarantee the accu-

racy of the recorded airflow signal, because of possible distortions

caused by the subjects, i.e. if the tongue is not placed beneath the

mouthpiece of the pneumotachograph, the least flow-resistance is

not provided. Furthermore, due to the fixed arrangement of the

sensors the recording positions vary slightly, because of the different

physiques of the subjects.

We can summarize the benefits of the proposed method as fol-

lows: We only need one model for acoustic airflow estimation, inde-

pendent of the breathing phase. It further facilitates a frame-based

breathing phase detection. These features make the estimation real-

time capable.

5. CONCLUSION

In this paper, we introduce multivariate polynomial regression to

acoustic airflow estimation. Therefore, we map spectral features

from lung sounds of several recording positions to the airflow val-

ues. We evaluate the regression model using mean squared error be-

tween estimated and actual airflow and report its accuracy regarding

a frame-based breathing phase detection.

Earlier studies for acoustical airflow estimation require calibra-

tion, do not use multichannel information of lung sounds and some

studies ignored the effect of heart sounds. The proposed method

does not need calibration and enables a frame-based breathing phase

detection. In experiments, we show good results regarding the

acoustic airflow estimation and the breathing phase detection, for

high airflow values, even for intro-subject tests. Further experiments

indicate no significant impact of heart sounds on the performance of

the proposed method regarding acoustic airflow estimation.

Acoustic airflow estimation makes multichannel lung sounds

recording/analysis more attractive with respect to medical use, be-

cause it renders the pneumotachograph dispensable. Because our

experiments are limited to a small number of subjects with a certain

physique, as future work, we are planning to evaluate the proposed

method on a bigger population from data collected within a clinical

trial, and to consider also metadata for the regression model.
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