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ABSTRACT

Blind source separation (BSS) using independent compo-
nent based analysis (e.g., probabilistic ICA and infomax ICA)
have been studied in-depth to extract common hemodynamic
sources for a group of functional magnetic resonance images
(fMRI). The inherent assumption here is that the sources must
be non-Gaussian. For most of the real world data, the decom-
position is non-unique. Furthermore, there is no quantitative
way to determine the component(s) of interest common for
the group. This paper shows that using a novel constrained
Parallel Factor Analysis (PARAFAC)-based tensor decompo-
sition, one can extract the common task signals and spatial
maps from a group of noisy fMRI as rank-1 tensors. The ex-
tracted hemodynamic signals have very high correlation with
ideal hemodynamic response. A quantitative algorithm to ex-
tract common components for a group of subjects is also pre-
sented. The modified decomposition preserves the unique-
ness under mild conditions which is the most attractive feature
for any PARAFAC-based tensor decomposition approach.

Index Terms— fMRI, tensor decomposition, PARAFAC,
spatial map, task signal

1. INTRODUCTION
Functional magnetic resonance imaging (fMRI) provides a
non-invasive way to measure activity of brain during resting
state (r-fMRI) or task (t-fMRI). Specifically, when a subject
is scanned, the change of blood-oxygen level density (BOLD)
in the brain over time is measured. The resultant scan is a 4-
D image where the first three dimensions are spatial and the
fourth dimension is temporal. This provides an indirect way
to measure the activities of the brain regions. When a sub-
ject performs a task, the corresponding regions involved with
the task have a high inflow of oxygenated blood. This in turn
gives rise to the so-called hemodynamic response in fMRI
time series for the input impulse excitation.

During task fMRI, the subject is asked to perform a repet-
itive task to understand which part of the brain is involved
in that particular task. For example, one experiment may
investigate the brain regions involved while tapping the fin-
gers. In this case, a healthy person while in scanner, is asked
to perform finger tapping at a particular interval (15 or 30
secs). This repetition ensures that we are able to filter out

false positives found during non-repetitive task by investigat-
ing the fMRI time series and extracting parts involving the
hemodynamic response corresponding to the repetitive task.
In addition to a task, when a person is awake (even in rest con-
dition), there are some regions in the brain that are always ac-
tivated. In those regions, fMRI signal will have hemodynamic
response of different characteristics. fMRI scans can consist
of other signals (considered noise from neuroscience perspec-
tive), that involves breathing artifacts and eye-blinking etc.

Extracting the common hemodynamic signal from group-
fMRI is of utmost importance for further analysis of the data.
For example, some of the signals detected during a task may
be indicative of a psychiatric disease state and can be used
to discover an objective biomarker for diagnosis of the dis-
ease. In addition, the signals and their corresponding spatial
components may associate the regions of brain involved in
a particular task. The group level exploratory BSS analysis
using PCA and ICA have found success and become popu-
lar in the last decade in the analysis of fMRI [1] [2]. This
success can be attributed to their ability to extract biologi-
cally meaningful spatial maps of hemodynamic sources and
the rich history of these techniques being applied to a number
of biological signals [3]. However, since ICA is based on ma-
trix decomposition, it is unique under very restrictive condi-
tions. Source separation using PCA introduces orthogonality
between extracted time courses [4]. Also, there is no quan-
titative way to extract common components of interest for a
group of subjects from fMRI data. A tensorial extension of
ICA for fMRI has been proposed [5]. However, the unique-
ness of PARAFAC decomposition [6] that makes the tensor
decomposition most attractive has not been fully utilized for
fMRI.

Tensors are functions of three or more indices (i, j, k).
Conceptually they are similar to matrices that are functions
of only two indices (r, c). Even though tensor decomposition
techniques have been known for a long time, their penetration
to biomedical signal processing community have been slow.
They are gradually becoming popular for biomedical data [7].
For example, tensor decomposition has recently been applied
to EEG signals in [8].

The contribution of this paper is twofold. First, it presents
a novel constrained PARAFAC-based tensor decomposition
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approach to extract the task related common hemodynamic
signals and the activated spatial maps from a group of sub-
jects in a relatively straight-forward way as rank-1 tensors.
This takes advantage of the possible unique decomposition
for PARAFAC. Second, it also describes a quantitative algo-
rithm to extract the common task signals across a group of
subjects. This can find application in the plethora of fMRI
studies including filtering fMRI of various individual noises
to keep the common group signal, group level task activation
studies between patient and control groups etc.

2. PARAFAC-BASED DECOMPOSITION MODEL

The goal of a tensor decomposition technique is to decompose
a multi-way array (tensors) to a number of rank-1 multi-way
arrays (tensors). There are a number of approaches for the
decomposition− the most prominent among them being Par-
allel Factor Analysis (PARAFAC) [6] and Tucker Decompo-
sition [9]. The main advantage of rank-1 PARAFAC based
decomposition is its uniqueness in relatively mild conditions.
Commonly used rank-1 matrix decompositions (e.g., ICA) are
essentially non-unique unless the rank is actually one or under
some very specific constraints. Traditional PARAFAC-based
tensor decomposition model for fMRI was studied in [10] [5].
The authors found that this model was not suitable for fMRI
as it introduces cross-talk between spatial components. In
this paper, we modify the traditional PARAFAC with sim-
ple constraints that capture the essential properties of fMRI
decomposition. We present the traditional PARAFAC model
at first and then discuss our proposed modified constrained
PARAFAC model.
2.1. Preliminaries
Each fMRI scan is reshaped to a matrix (dim1 = spatial,
dim2 = temporal). The scans from a group of subjects
are concatenated to form a 3-way tensor where the dim3 =
subject. We denote the 3-way tensor of size I × J × K as
XI,J,K .
2.2. Traditional PARAFAC
The traditional PARAFAC [11] modeling to decompose the
tensor XIJK into F number of rank-1 tensors can be de-
scribed as

XI,J,K =

F∑
f = 1

af ◦ bf ◦ cf , X = (A,B,C) (1)

where A, B, C are of size I × F , J × F and K × F re-
spectively. af = A:,f , bf = B:,f , cf = C:,f where
A:,f is the f th column of A and ◦ denotes outer product. For
PARAFAC decomposition, each rank-1 tensor will consist of
one time signal for task (each column of B), a corresponding
spatial map (corresponding column in A) and the loading of
the spatio-temporal map for each subject (column in C). The
decomposition optimizes the following function:

min
A,B,C

||X1 − (C �B)AT ||2F (2)

where X1 = XJK,I and � denotes Khatri-Rao product.
More specifically, X1 is tensor X reshaped as a matrix with
number of rows J × K and columns I . Likewise we also
define X2 = XKI,J and X3 = XJI,K where X2 and
X3 correspond to reshaped matrix form of tensor X . It can
be shown that PARAFAC decomposition is unique under very
mild conditions. For a detailed analysis of PARAFAC unique-
ness see [6][11][12].
2.3. Constrained PARAFAC
Traditional PARAFAC tensor decomposition may introduce
components that are hard to interpret from a biological per-
spective. For example, one common empirical hypothesis is
that different regions in the brain will be responsible for dif-
ferent tasks. Hence in a healthy brain, the cross-talk between
spatial components should be as small as possible. We can
satisfy this by using ATA = Σ. Here Σ is a diagonal matrix
such that Σij = 0, when i 6= j. Incorporating this constraint
is a key contribution of this paper. Also, for interpretability,
we can assume the weighting of spatio-temporal maps in each
subject to be non-negative (C ≥ 0). Hence the corresponding
optimization is stated as:

min
A,B,C

||X1 − (C �B)AT ||2F s.t. ATA = Σ, C ≥ 0 (3)

This can be solved using alternating optimization tech-
nique by keeping two matrices constant and minimizing for
the third. Notice that for A, B, C, respectively, the alternating
optimization problem can be stated as:

min
A
||X1 − (C �B)AT ||2F s.t. ATA = Σ (4)

min
B
||X2 − (C �A)BT ||2F (5)

min
C
||X3 − (B �A)CT ||2F s.t. C ≥ 0 (6)

These three equations can be optimally solved, respec-
tively, by using orthogonal least squares solution to the
PARAFAC model [6] [13] [14], least square and non-negative
least square [15]. The unique solution for the sub-problem
described by (4) also normalizes the columns of A.

Interestingly, for exploratory matrix decomposition of
fMRI, the ICA method is regarded as more preferable to
(only) de-correlation techniques like PCA. The spatial in-
dependence of components by ICA enforces that their time
courses not be highly co-linear. This results in a more biologi-
cally plausible system model than PCA decomposition which
enforces orthogonality between time courses thus excluding
the detection of hemodynamic signals which correlate with
each other in the temporal domain [4]. Our objective function
(3) preserves the advantages of ICA as it does not enforce
any orthogonality between time courses. At the same time,
it is computationally simple and provides meaningful factors
corresponding to specific applications. One of the main ad-
vantages of constrained PARAFAC model compared to ICA
is that the model can be unique under more relaxed conditions
than traditional PARAFAC conditions [16][17].
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2.4. Extract Common Task Signal

The factor C (matrix size K × F ) includes the weightage
of each separated component for every subject in its columns.
In a group level analysis of task fMRI, every subject performs
the same task. In the decomposition, the extracted component
corresponding to the task(s) will have relatively same weigh-
tage in each subjects. The subject-level variations and noises
will be captured in other components. A simple procedure
to find the task signal(s) from F number of components is
described in Algorithm 1.

Algorithm 1: Extracting Task Signal Components
Data: C matrix from fMRI PARAFAC
Result: Component IDs for Task Signals in Vector I
I = [ ];
for 1≤ i≤ F do

Cmin = minimum(C:,i);
Cmax = maximum(C:,i);
if Cmin

Cmax
≥ ω then

I = [I; i];
end

end

Based on empirical results ω is set to 0.1. This algorithm
can be extended to systematically extract the task signals from
the data based on prior knowledge. In this case, the value of
F can be increased from 1 until the required number of task-
signals are found using the algorithm.

3. RESULTS
In order to validate our model, we used three small fMRI
datasets (one simulated, two real-world). We also compare
our extraction result with previous models for the real-world
datasets. For implementing fMRI−PARAFAC, we used n-
way toolbox for MATLAB freely available from 1. Spatial
maps from tensor decomposition were overlaid using caret
software available from 2.

3.1. Simulated Data
For our first experiment, we used simTB 3 toolbox to gener-
ate task-fMRI data for 9 subjects. The already available MAT-
LAB script (experiment params block.m) was modified to
accommodate 5 independent components. Two blocked con-
ditions are used. The hemodynamic response corresponding
to these two blocked conditions will give rise to two common
signals across subjects. The other 3 components represent un-
desired signals that are common for few of the subjects. We
do not consider them as components of interest even though
our algorithm is able to generate those components. The de-
composed rank-1 tensors were able to capture the common

1http://www.models.life.ku.dk/nwaytoolbox
2http://brainvis.wustl.edu/wiki/index.php/Caret:

Download
3http://mialab.mrn.org/software/simtb/

(a) Spatial map ground truth (b) Extracted spatial map

Fig. 1: Performance of proposed model in extracting the spa-
tial maps

(a) Hemodynamic time courses for
three subjects for task condition (b) Extracted common time

course

Fig. 2: Performance of proposed model in extracting time
course. It captures 7 task blocks.
task signal and individual hemodynamic responses. One com-
mon spatial map extracted from the data is shown in Fig. 1.
We have also shown the hemodynamic time course corre-
sponding to the spatial map in Fig. 2. The algorithm was able
to extract the seven task blocks from the generated fMRI data
in columns of matrix B.
3.2. Real Data
3.2.1. Visuomotor Task
The second dataset is a visuomotor task [18] data available
from fMRI GIFT toolbox 4. The dataset consists of three
subjects. Here we briefly describe the experiment. The task
consisted showing of motor-free visual perception test, re-
vised (MVPT-R) figures an average of 17 s apart using the
computer program E-Prime. For each item, a central tar-
get test image was presented above four other images (out
of which one matches the test image) numbered 1 through
4, from left to right, as in the MVPT-R test. The task was
first to look at the image and match the image with correct
number among the choices. The task consists of visual per-
ceptions involving spatial relationships, visual discrimination,
figure-ground, and visual closure. Buttons 1 and 2 were con-
trolled by the index and middle fingers of the right hand, re-
spectively, and buttons 3 and 4 were controlled by the index
and middle fingers of the left hand, respectively. Here hemo-
dynamic responses represent visuomotor tasks corresponding
to visual discrimination-right hand coordination and visual
discrimination-left hand coordination, respectively. In our
experiment, these two signals are separated into two compo-

4http://mialab.mrn.org/software/gift/
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Fig. 3: Visuomotor Component 1, left: spatial maps (a) axial
and (b) posterior view, right: ideal hemodynamic response
in red; extracted hemodynamic response in blue; correlation
0.86

Fig. 4: Visuomotor Component 2, left: spatial maps (a) axial
and (b) posterior view, right: ideal hemodynamic response
in red; extracted hemodynamic response in blue; correlation
0.90
nents as shown in Figs. 3 and 4. Both the components were
able to identify the corresponding visual and motor areas.

3.2.2. Working Memory Task
Our third dataset is taken from Human Connectome Project [19].
Specifically, we used scans of three subjects from the working
memory task-fMRI. The preprocessed fMRI data is available
from 5. The task consists of four blocks each representing a
different type (places, tools, faces and body parts) visual cue
for 0-back and 2-back memory tasks. Within each run, half
of the blocks use a 2-back working memory task and half use
a 0-back working memory task. A 2.5 second cue indicates
the task type (and target for 0-back) at the start of the block.
Each of the two runs contains 8 task blocks (10 trials of 2.5
seconds each, for 25 seconds) and 4 fixation blocks (15 sec-
onds). On each trial, the stimulus is presented for 2 seconds,
followed by a 500 ms inter-task interval (ITI). Our main goal
here is to extract the hemodynamic response responsible for
working memory. This consists of a combination of 0-back

5https://www.humanconnectome.org/

Fig. 5: Working Memory, left: spatial maps (a) axial (b)
ventral and (c) posterior view, right: ideal hemodynamic re-
sponse in red; extracted hemodynamic response in blue; cor-
relation 0.90

and 2-back responses. In order to reduce the computational
complexity, we only used voxel corresponding to grey mat-
ter from the brain. The ideal response was calculated using
MATLAB toolbox SPM 6 and compared with the extracted
signal in Fig. 5.
3.3. Comparison with Previous Results
The comparison between proposed model, group-ICA [1] and
tensor-ICA [5] in terms of average correlation of extracted
time series with ideal hemodynamic response is shown in ta-
ble below. Here higher correlation means better performance.

Visuomotor Working Memory
Group-ICA [1] 0.91 0.90
Tensor-ICA [5] 0.86 0.85
proposed model 0.88 0.90

Although our proposed method was able to extract the sig-
nals with high correlation, the main advantage is its inherent
simplicity and the uniqueness of decomposition under rela-
tively mild conditions. Also, we have provided an algorithm
to extract common task signals from a group quantitatively.

4. CONCLUSION AND FUTURE WORK
In this paper, we have developed a PARAFAC-based tensor
decomposition for blind source separation of group-fMRI
data. We introduced a systematic way to find components of
interest for the group. We also showed that fMRI task signals
can be decomposed as rank-1 tensors. In future, we plan
to use this work to compare task activations in psychiatric
patients vs healthy for extension of our previous work [20].
Also, we plan to devise an iterative algorithm to find the
underlying true tensor rank for group-fMRI data.
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