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ABSTRACT 

 
The goal of this study is to accurately distinguish between 
finger tremors of Parkinson’s disease and other movement 
disorders using a tri-axial gyroscope. Finger tremor is 
specifically studied here as compared to hand tremor since 
farther distance from radio-carpal joint results in better 
acquisition of tremor signal. This study is an effort towards 
providing physicians with a clinical decision support system 
to facilitate them in accurate diagnosis of Parkinson’s disease 
(PD) and help them in discriminating between other 
movement disorders and PD. We designed the hardware to 
acquire angular displacement from tri-axial gyroscope and 
apply a series of techniques to extract different features in 
time and frequency domains. Both resting and postural 
tremor is studied for analysis. A total of 104 people 
participated in our study, using features from this data we 
were able to create a Clinical Decision Support System 
(CDSS) with overall accuracy of 82.43%. Additionally, 
CDSS was also used as a first hand diagnostic tool in a real 
hospital setting with an accuracy of 77.78%.  
 

Index Terms— Parkinson’s disease, Movement 
disorders, Tremor, Tri-axial Gyroscope, Clinical Decision 
Support Systems 

1. INTRODUCTION 
 
Parkinson’s Disease (PD) [1] is the second most common 
neurodegenerative disorder after Alzheimer's disease and 
affects approximately seven million people globally and one 
million people in the United States [2]. Parkinson’s disease at 
time is misdiagnosed as Vascular pseudo-parkinsonism [3], 
Alzheimer’s disease [4], Dystonia [5] or Benign Essential 
Tremor [6]. This misdiagnosis occurs due to overlapping 
symptoms shared by these disorders, since like PD, people 
suffering from other movement disorders (OMD) also exhibit 
tremors, bradykinesia and impaired balance [7]. Hence, 
diagnosis and accurate discrimination is difficult for 
physicians due to non-availability of a standardized 
diagnostic test for Parkinson’s disease [7]. Currently  

 
 
diagnosis is made through a combination of subjective 
neurological tests and examination of a patient’s medical 
history [8]. To the best of our knowledge, an inexpensive yet 
effective method for diagnosis of PD is still non-existent. 
Hence, this poses a dire need for a test that reduces diagnosis 
time, is inexpensive and is significantly accurate as compared 
to contemporary diagnostic methods.  With technological 
advancements in wearable devices and computational 
capabilities, various researchers have started to use wearable 
sensors to monitor motor symptoms of movement disorders 
[9], [10].  
     Tremor is the most common symptom of neurological 
disorders; where the behavior of tremor varies across 
different disorders. Therefore, different disorders can be 
distinguished on the basis of analyzing their characteristic 
tremor. Existing research in this area mainly uses wrist and 
other parts for signal acquisition and analysis [11]. However, 
in early cases of Parkinson’s disease and in most cases of 
Benign Essential Tremor, wrist tremor and tremor in other 
parts of the body is not significant as compared to tremors in 
the fingers of the patient. Furthermore, the tremor in each 
finger exhibits different spectral behavior, which makes 
analysis of finger tremor the major focus for our investigation 
into Parkinson’s disease diagnosis. 
 
     This work investigates the efficacy of computer aided 
diagnosis using wearable devices as compared to the initial 
diagnosis made by a physician in a hospital setting. To aid 
our research, we conducted a comprehensive subjective study 
involving 104 human subjects who were assessed by a 
neurologist prior to the clinical trial. Table 1 describes the 
distribution of participants of the study. In addition to these 
subjects used for training and testing the classifier, 9 
additional subjects were chosen whose condition was initially 
unknown to the neurologist. For these later set of subjects, the 
proposed algorithm acted as the first hand diagnostic tool 
with the neurologist’s assessment acting as a performance 
evaluator. 
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Table.1. Details of participants 
Group Participants Mean Age 

(Years) 
Parkinson’s 

disease 
37 66.84 

Other movement 
disorders 

16 47.5 

Healthy 51 43.76 
Total 104 52.54 

 

 
Figure 1: Participant wearing the MPU-6050 IMU for 
tremor signal acquisition on middle finger of left hand. 

 
2. DESIGN METHODOLOGY 

2.1. Experimental Setup 
 
A 12-month study was conducted at the Department of 
Neurology and Rheumatology, Military Hospital Rawalpindi 
Pakistan. Military Hospital Rawalpindi is a 1200 bed hospital 
located in Rawalpindi, Pakistan. A military hospital was 
chosen for this study because of large military veteran 
customer base, who are more likely to suffer from 
Parkinson’s disease as compared to people belonging to other 
professions who face less trauma [12]. Subjects participating 
in the study were divided into three groups:  

1. Parkinson’s disease PD (Class 1) 
2. Other movement disorders OMD (Class 2) 
3. Healthy Subjects (Class 3) 

Participants suffering from movement disorders (including 
PD) were clinically diagnosed by a Neurologist prior to our 
experiment.  
    For acquisition of tremor signals, participants wore a small 
wearable ring on their fingers, which incorporated an 
InvenSense MPU-6050 Inertial Measurement Unit (IMU). 
MPU-6050 combines a 3-axis Gyroscope, a 3-axis 
Accelerometer and a Digital Motion Processor in one unit. 
For precision tracking of both fast and slow motions, MPU-
6050 features a user-programmable gyroscope full-scale 
range of ±250, ±500, ±1000, and ±2000°/sec (dps) and a user-
programmable accelerometer full-scale range of ±2g, ±4g, 
±8g, and ±16g. For the purpose of this study we acquired data 
using only the 3-axis gyroscope present in the MPU-6050 
chip. A participant wearing the wearable sensor can be seen 
in Fig.1.  
 
2.2. Signal Acquisition Procedure 

In our study 12000 signal samples were acquired from each 
finger. During the acquisition process the participants were 
asked to stretch their arm without support. During acquisition 
process, the subject was asked to rest their arm for some time 
after acquisition was complete from each finger so that a tired 
arm does not change the tremor behavior. The tremor samples 
acquired from each finger were saved on a general purpose 
computer system along with other details of the patient such 
as name, age, identification number, years of disease, highest 
level of education and family history of related disease. 
Sometimes additional information was also stored if it was 
deemed useful for future reference and analysis such as 
asymmetric tremor behavior, previous traumatic experiences 
and the scale at which the participant was complying to 
instructions given to them related to the conduct of the 
experiment. Prior to the experiment a consent form was also 
signed by the participant and counter signed by the person 
conducting the experiment. Furthermore, on suggestion of the 
neurologist participants with prescription of levodopa were 
instructed to miss their morning levodopa dose for better 
tremor acquisition. Block Diagram for complete system is 
given as Figure 2. Data acquired from the IMU sensor is 
stored into a personal computer through a microcontroller 
unit. After storing data, signal conditioning techniques are 
applied to tremor signals which are explained in the next 
section.  

Figure 2: Block Diagram of complete system 
 

2.3. Signal Preprocessing 
    
After successful acquisition of a participant’s data the signals 
acquired from the gyroscope are preprocessed to remove 
random and impulse noise in order to enhance the 
performance of subsequent signal processing stages. Impulse 
noise creates undesirable artifacts in the frequency spectrum 
at higher frequencies. As most of our features are based on 
spectral analysis such artifacts reduce the accuracy and 
effectiveness of these features. An order 5 median filter is 
applied before feature extraction to condition the signal. 
Furthermore, to reduce sensor offsets and drifts due to various 
physical phenomenon, a high pass IIR filter with cut-off 
frequency fc	
  ≈ 0.25 Hz is applied to the signal [13]. 
 
2.4. Feature Extraction and Selection: 
                                                                                      
Tremor in PD is generally characterized by rhythmic 
movements at a frequency of approximately 4–6 Hz, which 
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predominantly occurs at rest but also can be present during 
action [14]. Tremor of other movement disorders (OMD) also 
exhibit a certain frequency range, the range of which partially 
overlaps the frequency ranges of PD tremor. For this purpose, 
in addition to spectral features, time-domain features were 
also extracted separately for each finger. As we were 
acquiring angular displacement 𝜃",$, the features extracted 
for velocity and acceleration were computed by taking 1st and 
2nd derivative of  𝜃",$ respectively. As for using dominant 
frequency component 𝐹&'( of tremor signal as a single 
feature, we found out by analysis that dominant frequency 
component does not serve as a good feature in discriminating 
between PD and other movement disorders (OMD) . Hence, 
we bucketed the frequency spectrum of tremor signal and 
treated a single bucket as a single feature for the classifier as 
shown in Fig 3. 
 
Figure 3.  Frequency Spectrum of  𝜃"   before and after 
bucketing. 

 
Some of the features used for training have been inspired by 
time-frequency features used in [11], [15], [16]. Absolute 
velocity 𝜃"$ is calculated using the following relation: 

 

𝜃"$ = 𝜔"$ = ω,
-.// + 	
  ω,

23456	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (1) 

 
     After calculation of wide range of features, different 
combinations of features were tried for training and only 
those features were retained on which maximum accuracy 
was achieved. Table 2. gives the list of the features that 
resulted in maximum accuracy. 
 
     Mean, Standard Deviation and Kurtosis of 𝜃",$ are 
effective statistical measures to quantify severity and 
behavior of tremor, which is different in case of Parkinson’s 
disease and Benign Essential Tremor . Furthermore, using 
complete frequency spectrum as a feature adds an extra 
measure for diagnosis as compared contemporary diagnostic 
techniques. 
 
Table.2. Summary of features extracted from tremor 
signals acquired through tri-axial gyroscope. 

Feature Definition 
Behavior 
of Tremor  

Behavior of limb tremor (symmetric/ 
asymmetric) 

rSTD,Amax Correlation between Standard-deviation of 
angular velocity vs. peak spectral 

amplitude 
Pav Power of Signal 

ηroll,pitch Cross-correlation between frequency 
spectrum of Roll and Pitch 

µr Mean of Roll 𝜃" velocity 
µp Mean of Pitch 𝜃$ velocity 
σr Standard Deviation (STD) of Roll velocity 

𝜃" 
σp Standard Deviation (STD) of Pitch 

velocity 𝜃$ 
Aroll Bucketed Frequency Spectrum of 𝜃"  
Apitch Bucketed Frequency Spectrum 𝜃$ 

IQR roll Interquartile Range of Roll velocity 𝜃"  
IQR pitch Interquartile Range of Pitch velocity 𝜃$ 
𝒔𝜽𝒓 

 

Pearson’s coefficient of skewness for Roll 
velocity 𝜃"  

𝒔𝜽𝒑 
 

Pearson’s coefficient of skewness for Pitch 
velocity 𝜃$ 

κroll , κpitch  Kurtosis of Roll 𝜃"  and Pitch 𝜃$ 
velocities 

µavg Mean of absolute velocity 
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σav Standard deviation of absolute velocity 
 

3. CLASSIFICATION AND CROSS-VALIDATION 
 
For classification and prediction, we used Google’s 
Prediction API. Prediction API is a machine learning black-
box but a simple and stable way to train Machine Learning 
models. There are two model configurations to choose from: 
Classification and Regression. 
 
We used 10-fold cross-validation (CV). 10-fold CV method 
divides data into 10 sets of size 

D
GL

. Model is trained on 9 
datasets and tested on 1 data set. The process is repeated 10 
times and mean accuracy is taken. Initially, we used 
Prediction API for classification of two classes, which results 
in three different cases: 
 

1. Parkinson’s disease vs. Other movement disorders 
2. Parkinson’s disease vs. Healthy 
3. Other movement disorders vs. Healthy 
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Prediction results of the above three cases are reported in 
Table 3. 
 
Table.3 Performance of classification for two classes 1. PD 
vs. Other movement disorders 2. PD vs. Healthy 3. OMD 
vs. Healthy. (All Results are reported in %) 

 Sensitivity* 
 

Specificity+ Overall 
Accuracy 

PD vs. 
Other 

movement 
disorders 

90.09 59.88 80.00 

PD vs. 
Healthy 

96.80 100.0 99.78 

Other 
movement 
disorders 

vs. Healthy 

95.28 72.95 95.28 

*Sensitivity = TP/(TP+FN), where TP refers to true positives, while FN 
stands for false negatives.  

+Specificity = TN/(TN+FP), where TN refers to true negatives, while FP 
stands for false positives.  

Now new model on Prediction API was trained using all 
three classes which resulted in overall accuracy of 82.43%. 
Accuracies for individual classes are reported in Table 4. 

Table.4 Accuracy with three classes  

 Accuracy 
Parkinson’s disease 87.37 

Other Movement 
disorders 

60.00 

Healthy 91.57 
 

4. USE AS A DIAGNOSTIC TOOL 
 

A software with GUI was developed for usability study of 
CDSS. In this separate study, the proposed system acted as a 
first hand diagnostic tool with the neurologist’s assessment 
acting as a performance evaluator. Nine participants 
participated in this study which was conducted separately. 
The four-step process of usability study is explained below: 
 

Steps of Usability Study: 
1 Signal Acquisition using hardware as described in 

Subheading 2.1. 
2 Features computed and stored in database. 
3 Feature vector sent to Prediction API and decision 

received prior to examination by a physician. 
4 Decision from CDSS stored and compared with 

physician’s hypothesis. 

Of these nine participants, five were later diagnosed by a 
neurologist with Parkinson’s disease and the rest were 
diagnosed with other movement disorders such as Benign 
Essential Tremor and Post-Stroke Parkinsonism [17]. 
Performance of usability study of CDSS is reported in Table 
5. 
 
Table.5 Performance of usability study of CDSS. 

 Sensitivity Specificity 
PD vs. Other 

movement 
disorders 

80.00 75.00 

 
Among these 5 subjects who were diagnosed with PD, two of 
them were in early stages of PD which verifies that our 
Decision Support System is capable of correctly diagnosing 
PD in early stages where characteristic Parkinsonian tremor 
is still not evident. This supports the fact that performance of 
CDSS is satisfactory. 

5. RELATION TO PRIOR WORK 

Previous work [15] on classification of Parkinson’s disease 
using wearable sensors classifies using only two classes: PD 
and Healthy. Though this technique gives very high accuracy 
but is not very pragmatic, the reason being that neurologists 
have prime difficulty in discriminating between tremor of PD 
and other movement disorders. Hence, taking this forward we 
analyzed not only finger tremor but also studied and 
classified tremor behavior of other movement disorders as 
compared to Parkinson’s disease. Furthermore, a large and 
diverse set of data from subjects was acquired as compared 
to previous studies conducted in this area. 
 

6. CONCLUSION 
 

Using a tri-axial gyroscope we were able to discriminate 
among the three classes with significant accuracy. Thus, the 
performance of CDSS appears to be satisfactory in 
discriminating between PD and related movement disorders.  
 
 In the future, the CDSS can also incorporate additional data 
such as voice signals, gait analysis and finger tapping for 
greater accuracy and robustness of CDSS. Future studies can 
also incorporate prediction of UPDRS (Unified Parkinson’s 
Disease Rating Scale) for PD and TETRAS (The Essential 
Tremor Rating Assessment Scale) for Essential Tremor, in 
order to give physician a better idea of progressive nature of 
such disorders. As effectiveness of levodopa in managing 
symptoms of PD gradually decreases with time. Hence, 
accurate prediction of UPDRS/TETRAS will not only result 
in greater diagnostic accuracy but also better drug 
prescription and monitoring management.  
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