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ABSTRACT
In speech understanding, perceptual computing is widely

used to quantify the perceptual properties. Previous re-

searches on perceptual computing mainly focused on the level

of phonemes (i.e. consonants and vowels). However, percep-

tual measurement in the level of syllables is also needed in

scenarios such as speech recognition. To tackle this problem,

we propose a systematic approach to calculate the perceptual

distribution of monosyllables. It is composed of three parts.

First, we generate a feature vector from each monosyllable

based on acoustic property. Second, we construct the per-

ceptual space based on the perception distance of every two

feature vectors. Third, we measure the perceptual distribu-

tion for these monosyllables based on the perceptual space

and a constraint matrix. Experiments show that 1) cluster

results are in accordance with articulation position category

in acoustics, 2) recognition rate of audiometry is within the

standard range of performance-intensity function, 3) distribu-

tion of paracusia is consistent with the computation results of

perceptual distribution.

Index Terms— Speech perception, perceptual distribu-

tion, acoustic features, monosyllable signals

1. INTRODUCTION

Perceptual properties of speech signals are the critical part of

speech understanding [1, 2, 3, 4]. Conventionally, the per-

ceptual properties are concluded from a great deal of clinical

study such as the recognition test [5, 6, 7]. Recently, percep-

tual computing of speech is introduced to provide a quantified

and convenient approach to measure the perception of speech

[8, 9]. It extracts the acoustic features and then computes per-

ceptual distribution.

Previous researches on the perceptual computing of

speech mainly focused on the level of phonemes (i.e. conso-

nants and vowels). They extracted time domain and frequency

domain acoustic features to compute articulation index of

consonants [10, 11]. Moreover, they obtained the perceptual

categories of vowels from processing the frequency domain

features and enhanced the tone perception based on funda-

mental frequency envelope [12, 13, 14].

However, perceptual measurements in the level of syl-

lables is sometimes needed as well. For example, clinical

speech recognition tests contain the test on syllable recog-

nition [15]. Moreover, the monosyllable is the basic unit of

daily speech rather than the phoneme and thereby perceptual

computing in the level of monosyllables potentially enhances

the validity of the speech perception measurement [16]. Ad-

ditionally, perceptual distribution of syllables affects the dis-

crimination of corpus, and further affects the validity and re-

liability of clinical audiometry [17]. Therefore, it is vitally

important to research the perceptual distribution of monosyl-

lables.

To measure the perceptual distribution of monosyllables,

we propose an systematic approach. It uses the monosyllabes

as input and generates perceptual distribution of these mono-

syllables. The basic intuition of our approach is that an inter-

mediate representation is needed to map the acoustic physical

property to perceptual property, which we call the perceptual

space of monosyllables. The original syllables are processed

into the perceptual space and then the perceptual space can

be used to derive the perceptual distribution. Our approach is

composed of three parts. The first part is responsible for fea-

ture vector generation of each monosyllable, which is based

on the acoustic property and the second part is for the percep-

tion space construction, which is based on the perception dis-

tance of every two feature vectors. The last part measures the

perceptual distribution with the perception space and a con-

straint matrix. Contributions of this paper can be concluded

as follows:

• We propose a systematic approach to calculate the per-

ceptual distribution of monosyllables. Experimental re-

sults show that recognition rate of audiometry is within

the standard range of performance-intensity function,

and that distribution of paracusia is consistent with the

computation results of perceptual distribution.

• We introduce the feature vectors of a monosyllable,

which represent its acoustic features. Cluster results
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are in accordance with articulation position category.

• We design a method to construct perceptual space of

monosyllables based on perceptual distance. It can be

further applied to all the syllabic corpus.

2. AN OVERVIEW OF THE SYSTEMATIC
APPROACH
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Fig. 1. An overview of the systematic approach to compute

the perceptual distribution of monosyllables.

Fig.1 illustrates an overview of the our approach to mea-

sure perceptual distribution of monosyllables. During the

pre-processing, monosyllables are first segmented into con-

sonants and vowels (Section 3.1) and then the acoustic fea-

tures including the time-domain and frequency-domain are

extracted (Section 3.2). With the weighted summary of the

features of the phonemes, feature vectors of the monosyl-

lable are generated, which represent its acoustic property

(Section 3.3). Provided with the feature vectors, the percep-

tual distance of each two monosyllables are calculated and

then the perceptual space is constructed, which represents the

confusion degree of these monosyllables (Section 3.4). The

perceptual distribution is measured based on the perceptual

space (Section 3.5). Clusters of phonemes (consonants and

vowels) are intermediate results to validate the accuracy of

acoustic features and perceptual distance. The perceptual dis-

tribution of the monosyllables is the output of our approach.

3. THE DESIGN AND IMPLEMENTATION OF THE
SYSTEMATIC APPROACH

We choose Chinese mandarin monosyllabic corpus as a rep-

resentative target in this work. Our purposed approach con-

structs its perceptual space, and measure the perceptual dis-

tribution of the monosyllables in the corpus.

3.1. Syllables Segmentation

A monosyllable contains a consonant, a vowel, and a tone.

Consonants and vowels have different perceptual features, so

we segment the monosyllables into consonants and vowels

separately [18]. During the segmentation, signal length, am-

plitude and energy are recorded for each monosyllable.

3.2. Acoustic Features Analysis of Consonants, Vowels
and Tones

Based on the time-domain and frequency-domain acoustic

characteristic of speech signals, we extract the vector features

of consonants, vowels and tone, which contains 38, 9 and 6

dimensions respectively.

The unit and magnitude of the elements in feature vectors

are usually greatly different, so we normalize features with

Equ 1, which guarantees the value of features are within the

range of [0, 1]. It eases the construction of perception space.

xnew =
xpre −min(Xpre)

max(Xpre)−min(Xpre)
(1)

In Equ 1, xnew represents the normalized feature vectors.

xpre denotes the extracted feature vectors, and Xpre denotes

the set of xpre. It is worth to be noted that each element of

the feature vector is normalized independently.

3.2.1. Acoustic Features of Consonants

Generally, signal length and energy of a consonant is short

and weak. Human ears are sensitive to acoustic characteristics

in frequency domain. So we extract a 38-dimension feature

vector, which is composed of 5 dimensions for time domain

[19], 12 dimensions for Mel Frequency Cepstral Coefficients

(MFCC), and 21 dimensions for bark band coefficients [20].

3.2.2. Acoustic Features of Vowels

A vowel follows a consonant in general situations. Therefore,

vowels perception should be considered with transition con-

dition from consonants [13]. So we choose linear predictive

coding (LPC) as acoustic features of vowels.

Taking 500 Hz, 1000 Hz, 2000 Hz as center, computing

the intergral of the LPC coefficients at bands of [450, 550]

Hz, [950, 1050] Hz, and [1950, 2050] Hz respectively, we get

a group of 9-dimension vectors as the features of vowels.

1104



PD Average of

intra-Class

PD Average of

inter-Classes

Case of

intra-Class

Case of

inter-Classes

Consonants 0.396 0.796
0.232

(j/q/x)

1.174

(j/q/x ↔ l/m/n/r)

Vowels 0.387 0.820
0.269

(ia/iang/iao)

1.023

(ia/iang/iao ↔ ui/un)

Table 1. Perceptual Distance of Cluster Results. The perception distance values of inter-classes are much higher than those of

intra-class.

3.2.3. Acoustic Features of Tones

Tone plays an important role in perception of speech signals.

The main difference between tones lies in fundamental fre-

quency [14]. So we set fundamental frequency as the acoustic

features of tones.

We compute values of fundamental frequency with Equ

2, where f0n is fundamental frequency of the n-th sampling

point, f0pre(n) is fundamental frequency to be processed,

F0mean is the mean value of all the fundamental frequen-

cies before being processed, and F is constant of the slope of

the f0 contour.

f0n = F × (f0pre(n)− F0mean) + F0mean (2)

3.3. Feature Vectors of Monosyllables

Consonants, vowels and tones all affect each other for the

speech perception of the monosyllables. For syllables with

the same vowel but different consonants, acoustic perception

will change at the starting position of vowels. For example,

for the same [ang] in [bang] and [cang], LPC coefficients of

the first three dimensions are different because of the differ-

ence in consonants [b] and [c]. And for syllables with the

same consonant but different vowels, perception condition

changes at the ending position of consonants. For example,

for the same [b] in [bang] and [bing], f0 contours are differ-

ent because of the difference at the starting position of [ang]

and [ing]. Tones have a great influence on the ending posi-

tion of vowels. For the same [bang] with the first tone (bāng)

and the falling-rising tone (bǎng), LPC coefficients of the last

three dimensions are different.

Based on the above reasons, independently measuring

phonemes cannot fully represent perceptual condition of

speech signals. So we propose feature vectors in the level of

monosyllable as described in Equ 3.

S = αC + βV + γT (3)

In Equ 3, S represents the feature vector of a monosyl-

lable, while the C, V, T represents the feature vector of the

consonant, the vowel, and tone respectively.

In feature vectors of monosyllables, acoustic features of

consonants (α), vowels (β), and tones (γ) are parameterized

with different weights. In a monosyllable, the signal length

and energy of a consonant is much shorter and lower than a

vowel. So the weights of consonants should be lower than

those of vowels. Since the tone has an impressive impact on

the pronunciation of the vowel but not on the consonant, so

the weight of tones should be within the range of consonants

and vowels [8]. We vary the three parameters (α, β, γ) for

many monosyllabic corpus to find the best fitting values. They

are 0.10, 0.65, 0.25 respectively.

3.4. Perceptual Space of Monosyllables based on Percep-
tual Distance

Before computing perceptual space of monosyllables, we

need to determine the method to measure perception distance

between two syllables. The euclidean distance is intuitive,

which reflects the human perception condition [8]. In our

work, we measure perception distance between syllables

using euclidean distance of their feature vectors.

We apply the hierarchical clustering independently on the

consonants and vowels based on perceptual distance. Com-

paring the cluster results with the speech articulation position,

the accuracy of acoustic feature vectors can be figured out [1].

From the cluster results, we can see that there are 9 classes

of consonants (i.e. {j/q/x}, {ch/sh/zh}, {c/s/z}, {h/k/p/t},

{l/m/n/r}, {b/d/f/g}, {y}, {w}, {zero consonant}) and 9

classes of vowels (i.e. {o/uo/e/eng/ou/ong/ueing/u}, {ui/un},

{ia/iao/iang}, {iong/iou/iu}, {a/er/ang/ao}, {ua/uang/uai/uan},

{ai/an}, {ei/ü/ün/üan/üe}, {en/i/ian/ing/ie/in}). Compared to

the speech articulation position, the accuracy of clustering

results is validated [1].

We compute the perceptual distance of every two mono-

syllables in each class, and then set the average value as its

center point. Perceptual distance of the two center points is

defined as the perceptual distance between the two classes.

The perception distance values of inter-classes are much

higher than those of intra-class, as shown in Table 1.

3.5. Perceptual Distribution of Monosyllables

For each monosyllable, we select three monosyllables closest

to it from the perceptual space and the selection algorithm is

shown in Equ 4. This is because there are three phonemes(i.e.

consonants, vowels, tones) in a monosyllable. These four
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j/q/x ch/sh/zh c/s/z h/k/p/t l/m/n/r b/d/f/g y w zero

o/uo/e/eng/ou/

ong/ueng/u
0.488 0.521 0.458 0.461 0.443 0.449 0.464 0.467 0.470

ui/un 0.494 0.527 0.464 0.467 0.449 0.455 0.470 0.473 0.476

ia/iang/iao 0.533 0.566 0.503 0.506 0.488 0.494 0.509 0.512 0.515

iong/iou/iu 0.512 0.545 0.482 0.485 0.467 0.473 0.488 0.491 0.494

a/er/ang/ao 0.530 0.563 0.500 0.503 0.485 0.491 0.506 0.509 0.512

ua/uang/uai/uan 0.506 0.539 0.476 0.479 0.461 0.467 0.482 0.485 0.488

ai/an 0.452 0.485 0.422 0.425 0.407 0.413 0.428 0.431 0.434

ei/ü/ün/üan/üe 0.452 0.485 0.422 0.425 0.407 0.413 0.428 0.431 0.434

en/i/ian/ing/ie/in 0.362 0.395 0.332 0.335 0.317 0.323 0.338 0.341 0.344

Table 2. The Constraint Matrix of Perceptual Space.

monosyllables are defined as one perceptual group, which is

the minimum unit of the perceptual space.

{
p̄i = P ± δ

|p̄i − pi| ≤ ε
(4)

In Equ 4, pi is the perception distance between test syllable

and candidate syllables, p̄i is mean value of all the items to

be selected, and P is a constraint constant for the perceptual

group. Considering perceptual distance of phonemes from

one or two classes is not always the same, we set a unique

constraint value (P ) for each perceptual group. The value

of P depends on the main monosyllable of each perceptual

group. Through a survey on two corpus (males and females

voice), we find the best fitting values of δ, ε and P . The δ and

ε are both 0.1, and P is a constraint matrix shown in Table 2.

4. EXPERIMENTAL RESULTS

We take a male-voice mandarin monosyllabic corpus as our

experimental target, which contains 1251 monosyllables and

covers almost all of our daily characters. The monosyllables

are segmented and tagged with VisualSpeech [18].

We conduct an audiometry experiment, using the percep-

tual groups in Section 3.5 as test materials. We set one mono-

syllable as test item, together with three monosyllables in the

same perceptual group as confusion items. 30 volunteers (22

males and 8 females) from different background participated

the speech signals recognition tests, which were generated ac-

cording to the test groups. Each participant took 60 percep-

tual groups in the experiment. The average recognition rate is

82.1% and the variance is 6.7%, which is within the standard

speech recognition range[21, 22]. It indicates the accuracy of

the generated feature vectors of the monosyllables.

From the results of wrong recognition, 69.4% of the con-

fusion recognition come from consonants, while 26.5% come

from vowels confusion and the other 4.1% are from tones.

Further more, in the consonants confusion, 92.9% confusion

items are in the same perceptual group with the test syllable.

For the vowels confusion, 89.1% of the confusion items are

in the same perceptual group with the test syllable. We can

see that distribution of paracusia is consistent with the com-

putation results of perceptual distribution.

From the experimental results, we can conclude that, 1)

recognition rate of audiometry is within the standard range

of performance-intensity function, validating the accuracy of

generated acoustic features in Section 3.3; 2) distribution of

paracusia is consistent with the computation results of per-

ceptual distribution, indicating the validity and reliability of

measured perceputal distribution. More comparison experi-

ments will be conduct in our future work.

5. CONCLUSIONS

In this paper, we present a systematic approach to measure

perceptual distribution of monosyllables. We introduce the

feature vectors, which represent the acoustic features of a

monosyllable. In addition, based on the perceptual distance,

we purpose the perceptual space of monosyllables to map the

acoustic property to perceptual property. Clustering results

of phonemes are in accordance with articulation position cat-

egory in acoustics, which validates the accuracy of the ex-

tracted acoustic features. The recognition rate of audiometry

is within the standard range of performance-intensity function

and distribution of paracusia is consistent with the computa-

tion results of perceptual distribution, which indicate the va-

lidity and reliability of measured perceputal distribution. The

idea of perception distance can be applied to other languages.
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