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ABSTRACT

Traumas and illnesses can cause injury in internal organs. The
liver, being the largest abdominal organ, is most likely to be
injured by trauma. Currently CT scans are analyzed by radi-
ologists to see if there is any injuries in organs; however, due
to the large amounts of data and its complexity in terms of
noise, intensity variations in different images and so on, vi-
sual inspection would be time consuming and prone of error.
Therefore, an automated approach would be beneficial. In this
paper we propose a fully automated Bayesian based method
for 3D segmentation of the liver. Experimental results show
that the proposed method can achieve high performance with
Dice and Jaccard similarity coefficients of 93.5% and 87.9%
respectively.

keywords - Image segmentation, Abdominal injuries,
Liver segmentation, Probabilistic atlas, Adaptive threshold,
Superpixel.

1. INTRODUCTION

Traumatic injury is the leading cause of death among Amer-
icans younger than 46 [1]. Traumatic pelvic and abdominal
injuries are among the most severe types of trauma. Clini-
cal signs alone are not sufficient to make diagnosis of stable
abdominal injuries and missed injuries are a common cause
of morbidity and late mortality [2]. In order to assess stable
abdominal trauma patients, Computed Tomography (CT) is
used which is the most widely imaging modality considered
as a gold standard source of imaging [3].

At this point two issues need to be addressed in case of
trauma patients. First, determining accurate diagnosis based
on generated data that is of a crucial importance to prevent
further injuries and make efficient treatment plans. Second,
traditional inspection of the large volume of different vari-
eties of data for each trauma patient is both time consum-
ing and prone to human error. In current practice, CT scans

are visually inspected, whereas their size and complexity ad-
versely affect the reliability. A computer-assisted support de-
cision system capable of rapidly analyzing large volumes of
patient information to generate accurate diagnosis and prog-
nosis has the potential to improve both patient care/survival
and resource utilization. Today, image segmentation is a ma-
ture field in medical image processing and provides physi-
cians with (semi-)automated computer-aided assistance.

Liver, due to its size and position, is the most vulnerable
abdominal organ [4]. In addition, since large blood vessels are
embedded in liver, its injuries cause serious risk for compli-
cations such as shock, so liver inspection is of a high priority.
Following the aforementioned need, an automated method of
liver segmentation is proposed in this paper.

Through the past decade we have gone through major ad-
vancement in the field of (semi-)automated liver segmenta-
tion, though it is still a challenging problem. Lue et al. [5]
reviewed different methods on automated liver segmentation.
Some previously proposed methods for liver segmentation in-
clude Semi-automatic and automatic algorithm based on de-
formable model [6], statistical shape model (SSM) [7, 8] and
probabilistic atlas (PA) [9].

In this paper we propose a method for segmenting the liver
in abdominopelvic traumatic injured patients. We assume that
the liver has similar geometric structure as well as position
among different patients. Our method employs probabilistic
atlases (PA) for both location and intensity of liver.

We first register annotated images (i.e. images with man-
ually annotations for liver) and then create a Bayesian proba-
bility model that accounts for location and intensity. A thresh-
olded result is then adapted using further anatomical informa-
tion and given to the final stage of the process. The final stage
uses a clustering method based on a superpixel approach [10].
The segmentation is completed by applying post-processing
to the result of the thresholded superpixels.

The remainder of this paper is organized as follows. In
section 2 we discuss our previous work, and in section 3 cur-
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rent modifications are outlined. In section 4, more details of
the proposed adaptive thresholding technique are discussed,
followed by the improvement of the region of interest (ROI)
in section 5. Section 6 discusses the application of superpix-
els in generating the final segmentation. Finally, section 7
presents the experimental results and concludes the paper.

2. RELATED WORKS ON LIVER SEGMENTATION

In our previous work [11], we proposed a Bayesian based
method for segmenting the liver. The method involved first
normalizing the abdominal cavity of each patient’s CT scan.
Two atlases were then created using 8 patients’ sets of CT
scans. The first atlas was based on liver location in the ab-
domen and was generated by calculating the probability of
each pixel belonging to the liver. The second atlas was gener-
ated by calculating the probability of a pixel being liver given
its intensity. Given a new set of slices, for each input pixel
the location probability, P (L|(i, j)), and intensity probabil-
ity, P (L|I), of that pixel is calculated based on its coordi-
nates (i, j) and intensity I . Then the overall probability of
that pixel being liver is defined as:

P (L|(i, j), I) =
P (I, (i, j)|L)P (L)

P (I, (i, j)|L)P (L) + P (I, (i, j)|L′)P (L′)
(1)

By considering P (L) ≈ P (L′), P (L|I) ∝ P (I|L), and
P (L|(i, j)) ∝ P ((i, j)|L) since intensity and position are two
independent random variables, we conclude that:

P (L|(i, j), I) ∝ P (L|I)P (L|i, j) (2)

By applying a predefined threshold on the mentioned proba-
bility values, an approximate of the liver position/intensity is
acquired. In the next step, by having the rough approxima-
tion, a customized and more accurate new intensity probabil-
ity atlas, P (I|L)new, is build. The new probability of a pixel
being the liver is calculated as:

Pnew(L|I, (i, j)) ∝ P (L|I)newP (L|i, j) (3)

An initial segmentation for each slice was generated using a
fixed-threshold to separate liver pixels from background. Af-
ter that, a post–processing approach was carried out to refine
the segmentation. Although this method achieves high per-
formance in terms of sensitivity and specificity, it has a draw-
back in distinguishing the border between liver and other or-
gans/tissue. In the next section we propose a method to fur-
ther improve this method.

3. PROPOSED IMPROVEMENTS

This paper will improve upon the methods proposed in [11].
The first improvement is to replace the constant threshold of

liver probability with an adaptive one. The result of an adap-
tive thresholding will then be used as an original ROI for the
next stage. The region will be modified automatically using
generalized anatomical information. This final ROI will be
used in connection with superpixels to achieve a final seg-
mentation. The flowchart in Figure 1 shows the stages in the
segmentation process.

Fig. 1: Flowchart of the proposed liver segmentation method

4. ADAPTIVE THRESHOLDING

In the previous work after calculating the probability of each
pixel being liver based on its coordinates and intensity (i.e.
Eq (3)), a fixed threshold was used as a cutoff value to seg-
ment the liver. In this paper, we propose an adaptive threshold
for each single slice of each patient. To calculate the thresh-
old, probability values for pixels of that slice are normalized
first and then for all values of an acceptable range of cutoff
probabilities, which are heuristically determined to be in the
range of t1 to t2 with the step size of ∆, the segmented liver
is acquired by applying each of the ti thresholds. It is obvi-
ous that a set of pixels detected as liver by a cutoff value of
t, is a subset of pixels resulted from a lower threshold. We
found out that at the optimum threshold, th, the segmentation
reaches a stable state which means that it has the minimum
changes when the threshold is increased by ∆. Therefore, the
optimum cutoff value of t is calculated by:
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f(t) =
||P≥t−∆

new ||0 − ||P≥tnew||0
||P≥tnew||0

th = arg min
t1≤t≤t2

f(t) (4)

where P≥tnew is a binary image with the pixel value of 1 when
the corresponding pixel in Pnew is greater than or equal to
t. Also, ||.||0 denotes the norm zero. At the next step, post-
processing including filling the holes, removing small objects
and smoothing the 3D component is applied.

The result of the segmentation after applying adaptive
thresholding compared to the segmentation with a constant
threshold is shown in section 7.

5. GENERATING THE NEW ROI

The liver segmentation improvement is accomplished in two
stages. First, the anatomical information is incorporated into
the approximate region of liver generated by adaptive thresh-
olding to create a new ROI. Then the liver is segmented using
the ROI and the application of superpixels.

Before anatomical information can be incorporated, it is
necessary to find a slice at which the liver appears largest.
This is assumed to be the slice with the maximum area in the
approximated liver region. The area of liver is growing until
reaching this slice and after that it gets smaller. Knowing this,
a different method is applied to each side of the division.

5.1. Slices with Increasing Liver Area

In slices above the one with the liver appears largest, the
nearby abdominal cavity does not usually contain objects of
similar appearance except for the heart. Figure 2a shows that
the heart is nearly indistinguishable from the liver and thus
anatomical information should be used to assist the segmen-
tation.

The heart begins higher in the body than the liver and
therefore it is visible sooner than the liver and fades out to
make room for the liver. The heart also has a slightly higher
intensity due to the contrast dye in the blood.

In order to generate the new ROI, Figure 2b is created.
Note that the area in the red box shows the heart. Figure 2b is
generated by subtracting the current slice from its upper slice.
Figure 2b appears bright where slice n is darker than slice
n− 1, signifying that the region may be the heart. Now, dark
regions, e.g. in the green box in Figure 2b, show liver growth
into previously unoccupied space. Bright regions, e.g. in the
red box, show where the intensity is decreasing, the signature
of the heart beginning to fade.

Figure 2b is then thresholded to exclude the heart. The
change in the ROI is shown in Figure 2c. The gray region was
removed using the anatomical information. Figure 2d shows
the improvement in the final result.

(a) (b)

(c) (d)

Fig. 2: Improving ROI for slices before the largest liver area.
(a): Original image (b): Intensity change from previous slice:
Bright pixels represent decreasing intensity from previous
slice. (c): Change in ROI: gray was removed (d): Improve-
ment in final segmentation displayed on adjusted image. The
green is ground truth, red is the approximate, and blue is the
final result. The final result line overlays some other regions.

5.2. Slices with Decreasing Liver Area

In the slices below the one where the liver appears largest, the
nearby abdominal cavity often contains other objects which
might have similar appearance to the liver. Additionally in
one slice, the liver may appear as two or more disjoint com-
ponents. The new ROI starts with dilating the segmentation
result of the adaptive thresholding approach. This part of the
ROI is visible in Figure 3a as the white region. By assuming
that this might be an underestimate, we look at the result of
the one above slice, Ln−1. Pn corresponds to 2D matrix of
Pnew values of slice n. I(B) corresponds to a set of pixels’
intensity from the original image masked by B. New pixels
are added to the segmentation by using:

ROIn = Ln−1 ∩ dilate(P≥thn ) (5)

Added =

{
q ∈ ROIn | |I(q)− µ(I(P≥thn ))|

< 0.5σ(I(P≥thn ))

}

These pixels, still considered likely to be liver, are gray in
Figure 3a. Figure 3b shows the improvement in the final result
from the approximate ROI.
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(a) (b)

Fig. 3: Improving ROI for slices after largest liver area. (a):
Change in ROI: gray was added (b): Improvement in fi-
nal segmentation displayed on adjusted image. The green is
ground truth, red is the approximate ROI, and blue is the final
result. The final result overlays some parts of other borders.

6. CONSTRUCTING THE FINAL SEGMENTATION
USING SUPERPIXEL

The ROI calculated in the previous section is an approximate
of the liver which included a basic dilation. In different loca-
tions it may be an under or overestimate. Simple thresholding
could create issues such as including parts of nearby struc-
tures. To resolve this issue, superpixel approach is used that
incorporates more information into the decision. The super-
pixels were generated using Simple Linear Iterative Cluster-
ing (SLIC)[12]. SLIC clusters the image through k-means
considering both intensity and location coordinates. The set
of all superpixels is S.

Fig. 4: Contrast adjusted image with superpixel boundaries.

A list of all superpixels that have intersection with the ROI
is then generated.

Ls = {si ∈ S | si ∩ROI 6= φ} (6)

The liver statistics are described for each slice using the
mean and standard deviation of the approximate segmenta-
tion. The mean of each superpixel on the list is calculated. A
superpixel is then added to the final segmentation if the su-
perpixels mean is within 1.5 standard deviations of the mean
of the input segmentation.

Ln =
{
si ∈ Ls| |µ(si)− µ(I(P≥thn ))

∣∣ < 1.5σ(I(P≥thn ))}
(7)

Superpixels provide two major advantages over threshold-
ing. First, by analyzing clusters, the inclusion into the seg-
mentation represents an object rather than a dash of ideal pix-
els. This is crucial as post-processing fills holes in the final
segmentation. Second, superpixels provide a way to include
pixels that are near the ROI as long as they are part of a cluster
that has intersection with the region.

7. EXPERIMENTAL RESULTS AND CONCLUSION

8 patients with total of 332 CT images are used to create two
atlases. The algorithm is tested on 503 slices from 10 pa-
tients, 7 sets are from University of Michigan Hospital and
3 from Virginia Commonwealth University Hospital. The re-
sults of segmentation are generated at three different stages.
1) Previously published algorithm which used constant cutoff
value. 2) Applying an adaptive cutoff value, 3) Final results
after implementing anatomical information and superpixels
for refinement of results from stage 2. The results of these
three different stages are compared to ground truth validated
by a radiologist. Voxel-wise Dice, Jaccard, sensitivity, and
specificity similarity values are calculated to evaluate the pro-
posed segmentation methods. The average of these four co-
efficient is calculated over 10 subjects in the test data set and
reported in Table 1. As shown in Table 1 all coefficients are
improved except for specificity which stays the same. The
final Dice and Jaccard values are 93.5% and 87.9% respec-
tively. Two similar approaches that used atlases achieved Dice
values of 94%[13] and 95.1%[14]. The Dice value of a su-
perpixel based method was 94.1% [10].Our algorithm, unlike
the mentioned methods, was developed and tested on CT im-
ages of traumatic abdominal and pelvic patients.These images
have a lot of variations, and we only used 8 images to create
the atlases. Therefore, the atlases do not capture the full vari-
ability.

Table 1: Results of proposed method at different stages of the
algorithm, each coefficient is acquired by the average of the
corresponding coefficient over all 10 subjects in the test data
set.

Segmentation
result

Previous
approach

Adaptive
threshold

Final
segmentation

Dice 88.3% 90.7% 93.5%
Jaccard 79.3% 83.1% 87.9%
Sensitivity 81.7% 85.3% 90.6%
Specificity 99.5% 99.6% 99.5%
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