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ABSTRACT

Schizophrenia (SZ) is a complex disease caused by a lot ge-
netic variants, epigenetic and brain region abnormalities. In
this study, we adopted a joint nonnegative matrix factorization
method to integrate three datasets including single nucleotide
polymorphism (SNP), brain activity measured by functional
magnetic resonance imaging (fMRI) and DNA Methylation
to identify multi-dimensional modules associated with SZ.
They are then used to study the coordination between regu-
latory mechanisms at multiple levels. This method projects
multiple types of data onto a common feature space, in which
heterogeneous variables with large coefficients on the same
projected bases form a multi-dimensional module. The ge-
nomic factors in such modules have significant correlations
and likely functional associations with brain activities. We
applied this method to the real data analysis and identified
multi-dimensional modules including SNP, fMRI and DNA
methylation sites. These selected biomarkers were finally
used to identify genes and voxels, which were confirmed to
be significantly associated with SZ.

Index Terms— Joint nonnegative matrix factorization,
SNP, fMRI, Methylation, Feature selection

1. INTRODUCTION

Genetic variations are recognized as important factors for
schizophrenia (SZ). Recent years have seen many research
works on exploring critical genes associated with SZ. Many
potential genetic variants have also been identified as possible
risk factors, for example, the G72/G30 gene locus on chro-
mosome 13q [1], gene DISC1 variation [2] and copy number
variations on gene GRIK3, EFNA5, AKAP5 and CACNG2
[3, 4]. In addition, DNA methylation as one of the main
epigenetic mechanisms to regulate gene expression, has also
been determined to be involved with the development of SZ.
Davies et al [5] have found that the interindividual variations
of DNA methylation are significantly correlated across blood
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and brain. Some studies have used blood DNA methylation to
identify potential biomarkers for SZ disease status [6, 7]. In
addition to (epi)-genetic approaches, fMRI has also been used
by measuring brain activity and further identifying functional
abnormalities within brain regions of SZ patients [8].

Different Datasets (e.g. SNP, fMRI and methylation data)
represent the same biological samples in different views.
These datasets provide partial and complementary informa-
tion, and their joint analysis has the potential to reveal factors
underlying complex diseases. Since different types of ge-
nomic data have different scales and formats, we cannot
simply aggregate them for joint analysis. Various data fu-
sion methods have been developed to address this challenge.
In SZ study, most of the works either use single dataset
[9, 10, 11] or two datasets [12]. However, there is little work
that can take advantage of three or more datasets to achieve
a more comprehensive analysis. Therefore, we propose to
use nonnegative matrix factorization (NMF) [13] method
for multiple data integration. NMF factorizes data matrix
into parts-based representation with nonnegative constraints,
which was widely used in data integration [14]. Zhang et al
[15] proposed a joint NMF framework for pattern discovery
from cancer genomic data. In this study, we employ joint
NMF model to extract correlative modules across SNP, fMRI
and methylation patterns for SZ. The correlative modules
were then applied to identify significant genes or biomarkers
associated with SZ.

The rest of the paper is organized as follows. In Section
2, we introduce the concept of joint NMF model and an op-
timization algorithm for solving the model. In Section 3 we
present the results of real data analysis. Finally, in Section 4
we conclude the paper and discuss future directions.

2. MATERIALS AND METHODS

2.1. Data preparation and preprocessing

Participants in this study were from the Mind Clinical Imag-
ing Consortium (MCIC). 80 SZ patients (age: 34 ± 11, 20
females) and 104 healthy controls (age: 32± 11, 38 females)
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were analyzed here. We used three types of data (SNP, fMRI,
DNA methylation data) shared by the 184 samples. We fol-
lowed the same preprocessing procedures in [12] for SNP,
fMRI data and [11] for methylation, resulting in 722,177
SNPs, 41,236 voxels and 27,508 methylation sites. Since
we want to find the biomarkers only associated with SZ,
we applied t-test on these three datasets between SZ and
healthy samples and only selected those variables with P-
value< 0.05). After variable selection, we obtained 50,452
SNPs, 2,550 voxels and 2724 methylation sites across 184
samples, which were represented in three matrices of size
184× 50452, 184× 2550 and 184× 2724, respectively.

We standardized each column of the three matrices and
scaled the matrices so that they have the same Frobenius
norm. We employed the method used in [16] to make the
matrices nonnegative. Specifically, each column in the matrix
was represented with two columns. The first column stores
the positive values and the second column stores the absolute
value of the negative values. The rest of the matrix were filled
with zeros.

2.2. The joint NMF model

NMF is a powerful tool for data reduction, which has been
used in analyzing high-throughput genomic data [16]. For a
nonnegative data matrix X ∈ Rm×n, the NMF can be formu-
lated as

min
W,H
‖X −WH‖2F

s.t. W ≥ 0, H ≥ 0,
(1)

where ‖ · ‖F is the Frobenius norm, W ∈ Rm×r stores the
basis column vectors and H ∈ Rr×n stores the correspond-
ing column coefficient vectors. r is the number of the basis
vectors. In most cases, r < min(m,n).

For each column x.j , a linear, nonnegative approximation
of the basis vectors is given by

x.j =

r∑
i=1

w.ihi,j =Wh.j . (2)

From Eq. (2) we can know that the r basis vectors w.i can be
considered as the skeleton of the data, and the r-dimensional
coefficient vector h.j describes the weights of each skeleton
on x.j .

For the SNP, fMRI and DNA methylation datasets of the
same samples, we denote them by X1 ∈ Rm×n1 , X2 ∈
Rm×n2 , X3 ∈ Rm×n3 , respectively. Here m is the num-
ber of samples we used. n1, n2 and n3 are the number of
SNPs, voxels and methylation sites, respectively. To simplify
the description, we assume the three matrices to be nonneg-
ative. We jointly decompose the three data matrices into a
common basis matrix W ∈ Rm×r with different coefficient
matrices Hq ∈ Rr×nq , (q = 1, 2, 3) and this process is called

joint NMF, formulated as follows:

min
W,H1,H2,H3

3∑
q=1

‖Xq −WHq‖2F

s.t. W ≥ 0, Hq ≥ 0, q = 1, 2, 3.

(3)

We use the multiplicative algorithm introduced in [15] to
find optimal solution to the problem in Eq. (3). We randomly
initialize matrices W and H1, H2 and H3 with nonnegative
values and update them iteratively by using the generalized
multiplicative updata rules as follows

Wij = Wij
(X1H

T
1 +X2H

T
2 +X3H

T
3 )ij

(W (X1HT
1 +X2HT

2 +X3HT
3 ))ij

, (4)

(Hq)ij = (Hq)ij
(WTXq)ij

(WTWHq)ij
, q = 1, 2, 3. (5)

The iterations are terminated until the relative value of the
residue of the object function in Eq. (3) is smaller than a pre-
defined tolerance τ . Since the object function is nonconvex
on both W and H , the above algorithm may only find a local
minimum. We rerun the procedure for 100 times with differ-
ent initial values. The solution with the lowest value of object
function was used as the final solution for further analysis.

2.3. Identification of modules

After joint NMF, the three datasets are projected onto a com-
mon space whose basis vectors are stored in the factor matrix
W . The coefficient row vectors in matrices H1, H2 and H3

are used to identify memberships of SNPs, voxels and methy-
lation sites in each modules, respectively. We calculate the
z-score for each element in each row of Hq(q = 1, 2, 3) by

zij =
xij − µi

σi
(6)

where µi is the mean value of i-th row vector in Hq(q =
1, 2, 3) and σi is the standard deviation. For Hq , zij > T
means that the feature j in dataset Xq is a member of module
i, where q = 1, 2, 3 and T > 0 is a given threshold.

Since the correlation between imaging and genetic data
could be quite low and the number of variables is much larger
than the number of samples, the above module identification
procedure could still yield many irrelevant features. As an
alternative, we apply stability selection [17] to extract corre-
lated features in each datasets. We perform random sampling
of size 92 from original 184 samples for 1000 times and em-
ploy joint NMF on each subsample to find the r modules. For
each subsample, we concatenate the feature vectors in r mod-
ules to be one feature vector. In this way, each subsample
set of size 92 yielded three feature vectors corresponding to
SNPs, fMRI, methylation sites, respectively. For each type of
datasets, we rank the feature indices in all of those 1000 fea-
ture vectors according to their occurrence frequency. We se-
lect the features whose occurrence probability are larger than
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θ1, θ2 and θ3 as the significant biomarkers corresponding to
SNP, fMRI, methylation, respectively. Finally, we perform
joint NMF on all of the 184 samples and use the intersection
of the resulting r modules from the three feature vectors as
final modules. If there exist modules with null feature indices
in any datasets, it indicates that the correlation may not exist
across three datasets.

2.4. Significance estimation

We employ a permutation test to estimate the significance
(P-value) of the identified modules. Assuming the number
of SNPs, voxels and methylation sites in a module are l1, l2
and l3, we denote them by SNPs: A = [a1, a2, . . . , al1 ],
fMRI voxels: B = [b1, b2, . . . , bl2 ], methylation: C =
[c1, c2, . . . , cl3 ], respectively. Note that ai, bj , ck are all vec-
tors and the length of vector is the number of samples. We
use ρ(x, y) to represent the Pearson correlation between x
and y. Based on the above assumptions, the mean correlation
among the three datasets in a module can be given as

ρ∗ =
1

3

 1

l1l2

l1∑
i=1

l2∑
j=1

ρ(ai, bj) +
1

l1l3

l1∑
i=1

l3∑
k=1

ρ(ai, ck)

+
1

l2l3

l2∑
j=1

l3∑
k=1

ρ(bj , ck)

 .

(7)

We permutate the row order of matrices A and B while keep
matrix C unchanged for ϕ times. For each permutation, the
mean correlation ρ∗i (i = 1, 2, . . . , ϕ) can be calculated by
Eq. (7), which is to build the null distribution of the mean cor-
relation. By large number of permutations, the significance of
the mean correlation can be evaluated by

P-value = | {i|ρ∗i ≥ ρ∗, i = 1, 2, . . . , ϕ} |/ϕ, (8)

where |S| is the number of elements in set S. Variables with
P-value smaller than 0.01 were considered to be significant.

3. RESULTS

3.1. Parameter selection

There are six parameters to be determined before we perform
the method introduced in Section 2 on the SNP, fMRI and
DNA methylation datasets (184 samples). We found that
when r > 4, the modules we identified have at least one
null module, which indicates that the datasets were over-
factorized. Therefore, we set r = 4. T used in preliminary
selection was set to T = 3 which is a z-score that corre-
sponds to the P-value smaller than 0.01. θ1,θ2 and θ3 were
used to select the significant SNPs, fMRI voxels and methy-
lations based on the occurrence probability in the stability

Table 1. The list of genes corresponding to SNP and methylation
data.

Dataset Gene ID

SNP
ABCA3, APPBP2, C17orf64, CALB1,
CAP2, DOK5, KCNK3, LOC645101,
LOC729602, METT5D1, MYO16, SNX20

Methylation

ANKRD15, ATP6V0A4, C1orf116, C1orf172,
C21orf56, CCNA1, CREB3L3, FLJ11017,
HOXA4, HTN3, KIF27, LDHD, PAGE5,
PDIA2, RCBTB2, RPL26L1, TMEM100

Table 2. The brain regions corresponding to fMRI data.
Brain region L/R volume(cm3)
midcingulate area 0.56/0.86
parahippocampal gyrus */0.405
postcentral gyrus 1.701/*
supramarginal gyrus */0.459
angular gyrus */0.27
precuneus 0.162/0.675
superior temporal gyrus 0.297/*

selection procedure. If we set a larger θi, (i = 1, 2, 3), we
will select less variables (SNPs, voxels and methylations) in
the identified modules. Moreover, we use cross validation
adopting a criterion that maximizes the mean correlation of
the modules to select the parameters θi, (i = 1, 2, 3) from
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} with different combinations.
Based on the above principles, we found that θ1 = θ3 = 0.7,
θ2 = 0.4 perform better. In a word, we set r = 4, τ =1.e-6,
T = 3, θ1 = 0.7, θ2 = 0.4, θ1 = 0.7 in our test.

3.2. Module analysis

Within the 4 modules we identified, only one module has
three feature indices corresponding to SNP, fMRI and methy-
lation. There are 13 SNPs from 12 genes, 18 methylations
from 17 genes and 210 voxels from 9 brain regions selected
in the module. The list of genes and brain regions were
presented in Table. 1 and Table. 2, respectively. Moreover,
the selected voxels were plotted in Fig. 1. Since the three
datasets all have some feature indices in the module, we
calculate the mean correlation and P-value not only among
the three datasets by Eq. (7),(8), but also between any two
datasets in the cases and controls, respectively. The correla-
tion and P-value were displayed in Table. 3. The correlations
of SNP-fMRI and fMRI-methylation are 0.204 and 0.124 in
cases, which are much higher than in controls. The P-value
of SNP-fMRI and fMRI-methylation in cases are all smaller
than 0.01, which means the correlations are significant. But
the P-value of SNP-fMRI and fMRI-methylation in controls
are 0.281 and 0.991 , which are all larger than 0.01. In SNP-
methylation and SNP-fMRI-methylation, the correlations in
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Table 3. The correlation and P-value of the module in cases and
controls.

Dataset combination Cases Controls
Correlation(P-value)

SNP-fMRI 0.204(1.2e-3) 0.086(0.281)
SNP-methylation 0.378(1.3e-4) 0.213(6.4e-4)
fMRI-methylation 0.124(7.2e-3) 0.064(0.991)
SNP-fMRI-methylation 0.235(1.0e-4) 0.121(1.2e-3)

cases are also much higher than in controls and the P-value
are all smaller than 0.01, so the P-values in cases are more
significant. The results in Table. 3 further confirm that the
SNPs, fMRI voxels and methylation sites in the identified
module are SZ-specific, which can be used to next study the
genes and brain regions associated with SZ.

-20-24-28

444036

646056

Fig. 1. Maps showing regions correlated with SNPs and
methylation datasets.

There are 29 genes identified from SNP and Methylation
data. Among them, the gene APPBP2 encoding amyloid pro-
teins were reported to have potential relationship with the SZ
[18]. Gene CAP2 is a central nervous system-expressed func-
tional gene and it has a high rate of copy number variation in
SZ [19]. C21orf56 is a up-regulated gene differentially ex-
pressed between SZ cases and controls, which has potential
relations with SZ [20]. CCNA1 is very important in cell cy-
cle regulation, which is significantly dysregulated in SZ cases
[21]. FLJ11017 is reported to have a role in SZ [22] and
KIF27 is reported to be differentially expressed in bipolar dis-
order and/or SZ [23].

We identified 9 brain regions from the fMRI data. In par-
ticular, for the left superior temporal gyrus, patients with first-
episode SZ showed significant decreases in gray matter vol-

ume over time [24]. The left postcentral gyrus was reported to
show significant difference between the SZ cases and controls
[25]. The regional heterogeneity of midcingulate area folding
complexity may be related to SZ with altered cortical devel-
opmental pathology [26]. In [27], an abnormally increased
parahippocampal response to neutral faces was positively as-
sociated with reality distortion in SZ.

4. CONCLUSIONS

SNP, fMRI and methylation are all important factors to study
the SZ, but most of the existing approaches either focus on
one or two datasets analysis. If we represent the datasets as
matrices with identical rows for the same sample sets, joint
NMF simultaneously projects matrices onto a lower dimen-
sion space and represents each column in the matrices with a
linear, nonnegative approximation of the primary bases. For
each matrix, we can use the nonnegative coefficient values to
select the columns correlated with each basis. In this way,
the hidden dependence structures can be identified and the
data heterogeneity in the datasets will also be reduced. Joint
NMF can be extended to handle three or more matrices eas-
ily. In this paper, we employ a joint NMF model to extract
important modules correlated across three datasets and iden-
tify SZ-specific features, which can be used to better under-
stand the biological mechanisms underlying brain functions.
Since joint NMF model does not use any prior information,
in future studies, we will incorporate gene networks or brain
region network information into our analysis model.
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