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ABSTRACT

This paper studies the classification of gene regulatory net-
works (GRNs) modeled by probabilistic Boolean networks
(PBNs). After observing Gaussian expression values of n
genes at m consecutive time points, with consideration of
missing data, an algorithm based on expectation maximiza-
tion (EM) is proposed to estimate the parameters and infer
the unknown parts of the networks in the maximum likeli-
hood (ML) sense. Then the estimated values are plugged in
to the Bayes classifier, which is optimal, and the performance
of the classifier is investigated through various simulations.

Index Terms— Trajectory classification, missing trajec-
tory data, Bayes classifier, probabilistic Boolean network,
gene regulatory network, expectation maximization

1. INTRODUCTION

Phenotypic classification using genomic data has been a
staple of genomic signal processing [1] for fifteen years, the
salient technologies first being expression microarrays and
then RNA-seq. Both technologies measure gene expression
over collections of cells and thus do not capture regulatory
timing. Unless there is synchronization, which in practice
there is not, the cells in a collection will be in different states,
so that the expression measurement is actually an average
of expressions over these states. For instance, it is typically
the case that the expression level of a gene will oscillate
cyclically when in the steady state, so that a microarray or
RNA-seq measurement is an expression average over the
cycle. This averaging masks differences in gene activity in
different phenotypes, thereby degrading classification. With
the advent of new single-cell technologies (still formative),
one can envision classification based on gene-expression time
trajectories, which will be far more sensitive to phenotypic
changes [2, 3, 4].

In [5] we considered classification via trajectories gener-
ated by gene regulatory networks: given a network, in this
case a binary probabilistic Boolean network (PBN) [6], and a
second network resulting from mutations in the original net-
work, the problem is to classify an observed time trajectory of

expression vectors as to which network it belongs. In [5] we
considered optimal classification (the Bayes classifier) based
on complete observation of the trajectory. Here we again as-
sume an underlying 0− 1 PBN; however, we assume a Gaus-
sian observational model, in which the expression level of
each gene given its state (hidden) follows a normal density
with some unknown mean and variance, and we observe the
Gaussian expression values of n genes in m consecutive time
points. Moreover, we allow missing observations, which re-
flects the practical situation in which the sampling rate for
expression measurement is insufficient to capture all expres-
sion state changes. Specifically, for any point in a trajectory,
there is a probability of missing the measurement.

Upon observing a trajectory, we estimate the unknown
network parameters as well as the unknown connections of
the networks that are partially known. To achieve maximum
likelihood estimation and inference, we use Expectation Max-
imization (EM) to estimate network parameters and plug in
the estimated parameters and the inferred networks to the
Bayes classifier [7]. We consider the effect of different pa-
rameters on average classification error over many random
networks to investigate the ability to classify healthy and
cancerous networks over a range of mutations using different
length trajectories and amounts of missing data.

2. BOOLEAN NETWORKS

For a binary Boolean network (BN) on n genes, a truth table
gives the functional relationships between the genes [8]. Each
gene value xi ∈ {0, 1}, for i = 1, · · · , n, at time k + 1 is
determined by the values of some predictor genes at time k
via a Boolean function fi : {0, 1}n → {0, 1} in the truth
table. In practice, fi is a function of the small number of
genes, Ki, which is called the input degree of the gene xi
in the network. Given a truth table, a gene network can be
represented as a graph with vertices representing genes and
edges representing regulations.

For BNs with perturbations (BNps), perturbation is intro-
duced with a probability p by which the current state of the
network can be randomly changed. Implicitly, we assume that
there is an independent identically distributed (i.i.d.) random
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perturbation vector at each time k, denoted by nk ∈ {0, 1}n,
where the i-th gene flips at time k if the i-th component of
nk is equal to 1. Therefore, the dynamical model of the states
can be expressed as

xk+1 = f(xk)⊕ nk+1, k = 0, 1, 2, · · · , (1)

where xk = [x1(k), x2(k), · · · , xn(k)]T is a binary state
vector, called a gene activity profile (GAP), at time k, in
which xi(k) indicates the expression level of the ith gene
at time k (either 0 or 1); f(xk) = [f1, f2, · · · , fn]T :
{0, 1}n → {0, 1}n is the vector of the network functions,
in which fi shows the expression level of the ith gene at
time k + 1 when the system lies in the state xk at time k;
nk = [n1(k), n2(k), · · · , nn(k)]T is the perturbation vec-
tor at time k, in which n1(k), n2(k), · · · , nn(k) are i.i.d.
Bernoulli random variables for every k with the parameter
p = P (ni(k) = 1); and⊕ is component-wise modulo 2 addi-
tion. The existence of perturbation makes the corresponding
Markov chain of a BNp irreducible.

We assume the following Gaussian observation model

f(yj(k)|xj(k)) ∼ N (µj(k), σ
2
j ), j = 1, 2, · · · , n, (2)

where xj(k) is the hidden binary state (0 or 1) of the j-th
gene, and yj(k) is the observed value of the j-th gene drawn
from the Gaussian pdf in (2). We assume that the variance
σ2
j of the j-th gene is constant over time, but its mean varies

over time and is defined as µj(k) = λ + δjxj(k). This
shows that when the j-th gene is non-activated and activated,
its observed expression values come respectively from a nor-
mal distribution with the means of λ and λ + δj and with
the same variance of σ2

j , respectively. We denote the ob-
served expression values of the n genes at time k by the vector
yk = [y1(k), · · · , yn(k)]T .

3. MAXIMUM LIKELIHOOD PARAMETER
ESTIMATION AND NETWORK INFERENCE

We assume that we partially know the network and do not
know the network parameters p, δj , and σ2

j . Using D ob-
served trajectories Y = {Y(1),Y(2), · · · ,Y(D)}, we aim to
infer the unknown connections of the network as well as the
parameters. This observed data set Y may be incomplete,
meaning that it may include missing data. Without miss-
ing data, each trajectory Y(d), for d = 1, · · · , D, is sup-
posed to have the expression measurements of the n genes
in m consecutive time points. However, we assume that each
gene at each time point has the probability pmiss of being
missed. As a result, each observed trajectory has the form
Y(d) =

[
y
(d)
i1
, · · · ,y(d)

im(d)

]
, where T (d)

obs = {i1, · · · , im(d)} is
the set of the observed time points in which at least one gene
is observed. It is obvious that T (d)

obs ⊆ {1, 2, · · · ,m} for any
d = 1, · · · , D.

For the maximum likelihood (ML) problem, our search
space consists of both discrete and continuous. The space of
the functions is discrete, and that of the parameters is con-
tinuous. Suppose F = {f1, f2, · · · , fM} is the space of M
possible network functions. Suppose our parameter space is
defined as θ = [p, δ1, · · · , δn, σ2

1 , · · · , σ2
n]. For any given

network function f i, i = 1, · · · ,M , we employ the EM algo-
rithm to find the optimal parameters θ:

θ̂i = argmax
θ
f(Y|f i, θ), (3)

The ML inferred network and estimated parameters are then
derived as,

(f̂ , θ̂) = arg max
(f ,θ)∈{(f1,θ̂1),··· ,(fM ,θ̂M )}

f(Y|f , θ). (4)

3.1. EM algorithm for finding θ

In (3), the network function is given, and we are supposed
to find the ML estimation for θ. Suppose the given network
function in (3) is f . The EM algorithm can be described sim-
ply as repeating the following steps until convergence:
1- Expectation: Q(θ, θs) =

∑
X log[f(X,Y|θ)]P (X|Y, θs),

2- Maximization: θs+1 = argmaxθ Q(θ, θs),
where X = {X (1), · · · ,X (D)} are the hidden variables
corresponding to D observed trajectories, and X (d) =

[x
(d)
1 , · · · ,x(d)

m ] are the hidden variables (states) of the d-
th trajectory from time 1 to m. Since the observations are
i.i.d., we have

log[f(X,Y|θ)] =
D∑
d=1

log[f(X (d),Y(d)|θ)], (5)

f(X (d),Y(d)|θ) = π
x
(d)
1

m−1∏
k=1

P (x
(d)
k+1|x

(d)
k )

∏
k∈T (d)

obs

f(y
(d)
k |x

(d)
k ),

(6)
where the transition probability matrix (TPM) is

P (x
(d)
k+1|x

(d)
k ) = pd(x

(d)
k+1,f(x

(d)
k ))(1− p)n−d(x

(d)
k+1,f(x

(d)
k )),

(7)
where d(x

(d)
k+1, f(x

(d)
k )) denotes the Hamming distance be-

tween the two vectors x(d)
k+1 and f(x

(d)
k ), and the conditional

density of the observation given the state is

f(y
(d)
k |x

(d)
k ) =

∏
j∈G(d)

k

f(y
(d)
j (k)|x(d)j (k)), (8)

where G(d)
k is the set of observed genes at time k of the d-th

trajectory. Note that G(d)
k ⊆ {1, 2, · · · , n}. From (2) and (8),

we have,

f(y
(d)
k |x

(d)
k ) = (2π)

− 1
2

∣∣∣G(d)
k

∣∣∣

×
∏

j∈G(d)
k

1

σj
exp

−
(
y
(d)
j (k)− λ− δjx(d)j (k)

)2
2σ2

j

. (9)
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We assume a uniform initial distribution, that is, π
x
(d)
1

=

1
2n for every value of x

(d)
1 . Using (5)-(9) we can write

Q(θ, θs) as in (10) (on top of the next page). Now we take the
derivative of Q(θ, θs) with respect to θ and make it equal to
zero. Without the loss of generality, we assume that σ2

j = σ2

and δj = δ for j = 1, · · · , n, and also λ, the baseline level
of expression, is known. Taking the derivative of Q(θ, θ(s))
with respect to p, δ, and σ2 leads to their estimates in (11),
(12), and (13), respectively, at the (s+ 1)-th step. We define
the following posterior probabilities which have appeared in
(11)-(13):

γd,si (k) = P (x
(d)
k = i|Y(d), θs), (14)

ξd,si,j (k) = P (x
(d)
k = i,x

(d)
k+1 = j|Y(d), θs). (15)

The posterior probabilities in (14) and (15) can be efficiently
computed using the forward-backward algorithm whose com-
plexity is linear in m. It can be shown that the posteriors in
(14) and (15) can be written as

γd,si (k) =
αd,si (k)βd,si (k)∑2n

r=1 α
d,s
r (k)βd,sr (k)

, (16)

ξd,si,j (k) =
αd,si (k)A

(s)
i,j β

d,s
j (k + 1)bd,sj (k + 1)∑2n

r=1 α
d,s
r (m)

, (17)

where A
(s)
i,j = P (xk+1 = j|xk = i) is the transition

matrix assuming θ = θs, and bd,s(k) is a 2n × 1 vec-
tor at time k, whose j-th entry is defined as bd,sj (k) =

f(y
(d)
k |x

(d)
k = j) assuming θ = θs, which can be com-

puted using (9). Furthermore, αd,si (k) and βd,si (k) are
respectively the forward and backward parameters. We
can write α, β, γ, and ξ in the vector-matrix form. De-
fine the vectors αd,s(k) = [αd,s1 (k), · · · , αd,s2n (k)]

T and
βd,s(k) = [βd,s1 (k), · · · , βd,s2n (k)]T . As a result, we have
the following recursions in the vector-matrix form,

αd,s(1) =
1

2n
12n ◦ bd,s(1),

αd,s(k + 1) =
[
A(s)Tαd,s(k)

]
◦ bd,s(k + 1), (18)

and

βd,s(m) = 12n ,

βd,s(k) = A(s)
[
βd,s(k + 1) ◦ bd,s(k + 1)

]
, (19)

where 12n is the all-one column vector of length 2n, and ◦
denotes the Hadamard product (or component-wise product).
Now suppose that γd,s(k) and ξd,s(k) are respectively a 2n×1
vector and 2n×2n matrix whose entries are given in (16) and
(17). Therefore, we have

γd,s(k) =
αd,s(k) ◦ βd,s(k)

‖ αd,s(k) ◦ βd,s(k) ‖1
, (20)

ξd,s(k) =

[
αd,s(k)βd,s(k + 1)

T
]
◦A(s) ◦ Cd,s,k

‖ αd,s(m) ‖1
, (21)

where Cd,s,k is a 2n × 2n matrix defined as

Cd,s,k =
[
bd,s(k + 1), · · · , bd,s(k + 1)

]T
. (22)

4. PLUG-IN CLASSIFIER

Once we have derived the ML estimates for the parameters
of both BNps using the EM algorithm, we can plug them

in to the Bayes classifier. Suppose θ̂ = {p̂, δ̂, σ̂2} and ˆ̃
θ =

{ ˆ̃p, ˆ̃δ, ˆ̃σ2} are respectively the ML estimates of the parame-
ters of the original and mutated BNps resulted from the EM

algorithm, and f̂ and ˆ̃
f are respectively the inferred original

and mutated networks. Hence, the plug-in classifier for any
given observation Y = [yi1 , · · · ,yim ] (with missing data) is
defined as

ψD(Y) =

 1, p̂1f(Y|ˆ̃f , ˆ̃θ) ≥ p̂0f(Y|f̂ , θ̂)

0, p̂1f(Y|ˆ̃f , ˆ̃θ) < p̂0f(Y|f̂ , θ̂)
, (23)

where p̂0 and p̂1 are the estimated values of the prior probabil-
ities of the original and mutated networks respectively. These
values can be estimated by the number of observations for
each network divided by the total number of observations, but
this estimate is not so reliable, especially in the small sample
scenarios. As a result, we assume the commonly used equi-
probable case, that is, p̂0 = p̂1 = 1

2 , and in the simulation
part, we generate the equal number of observations for each

network as well. The densities f(Y|ˆ̃f , ˆ̃θ) and f(Y|f̂ , θ̂) in
(23) can be computed using the forward-backward algorithm,
as previously demonstrated. To do so, we only need the for-
ward computations, and they can be written by

f(Y|f̂ , θ̂) =‖ α̂(m) ‖1, (24)

f(Y|ˆ̃f , ˆ̃θ) =‖ ˆ̃α(m) ‖1, (25)

where α̂(m) and ˆ̃α(m) can be computed by the forward com-
putations, as in (18), as follows

α̂(1) =
1

2n
12n ◦ b̂(1), α̂(k + 1) =

[
ÂT α̂(k)

]
◦ b̂(k + 1),

ˆ̃α(1) =
1

2n
12n ◦ ˆ̃b(1), ˆ̃α(k + 1) =

[
ˆ̃A
T
ˆ̃α(k)

]
◦ ˆ̃b(k + 1). (26)

5. SIMULATION RESULTS

In this part, we have studied the classification error averaged
over many randomly generated BNps. In the simulations, we
assume that the maximum input degree is K = 2, and the
bias probability is pbias = 0.5, meaning that each gene i has
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Q(θ, θs) = −nD log 2 +

D∑
d=1

m−1∑
k=1

2n∑
x=1

2n∑
x′=1

[
d(x

′
, f(x)) log p+ [n− d(x

′
, f(x)] log(1− p)

]
P (x

(d)
k = x,x

(d)
k+1 = x

′
|Y(d), θs)

−1

2
log 2π

D∑
d=1

∑
k∈T (d)

obs

∣∣∣G(d)
k

∣∣∣+ D∑
d=1

∑
k∈T (d)

obs

2n∑
x=1

∑
j∈G(d)

k

−1

2
log σ2

j −

(
y
(d)
j (k)− λ− δjxj

)2
2σ2

j

P (x(d)
k = x|Y(d), θs), (10)

ps+1 =

∑D
d=1

∑m−1
k=1

∑2n

x=1

∑2n

x′=1 d(x
′
, f(x))P (x

(d)
k = x,x

(d)
k+1 = x

′ |Y(d), θs)

nD(m− 1)
, (11)

δs+1 =

∑D
d=1

∑
k∈T (d)

obs

∑2n

x=1

∑
j∈G(d)

k

xj

(
y
(d)
j (k)− λ

)
P (x

(d)
k = x|Y(d), θs)∑D

d=1

∑
k∈T (d)

obs

∑2n

x=1

∑
j∈G(d)

k

xjP (x
(d)
k = x|Y(d), θs)

, (12)

σ2s+1
=

∑D
d=1

∑
k∈T (d)

obs

∑2n

x=1

∑
j∈G(d)

k

(
y
(d)
j (k)− λ− δs+1xj

)2
P (x

(d)
k = x|Y(d), θs)∑D

d=1

∑
k∈T (d)

obs

∣∣∣G(d)
k

∣∣∣ . (13)

the probability 0.5 of being 0 or 1 for any of its 2Ki inputs.
Furthermore, we have considered single gene mutations, such
that the mutated network is derived from the healthy network
after flipping the value of a random gene in one random con-
figuration of its inputs. We also assume that the output of one
random gene is unknown in one random configuration of its
inputs in the both BNps.

Fig. 1-(a) shows the error versus the number of sample
trajectories D. We can see that when D increases, the classi-
fication error decreases, the reason being that the parameters
are estimated, and the networks are inferred more accurately
when having more training trajectories. When there is enough
sample trajectories, the error converges to the Bayes error, as
the ML estimates are consistent. Fig. 1-(b) represents the
error versus m for different values of n. We see that the er-
ror has a decreasing trend as m grows, which shows us that
having longer trajectories leads to a better classification of
the networks. We also see from Fig. 1-(b) that the networks
with n = 6 genes have reached the lowest error, which can
help us in network reduction of larger networks. Figs. 1-
(c) and (d) show the error plots versus m for different values
of pmiss and σ2, respectively. As expected, when pmiss in-
creases, the classification error increases. The increase of σ2

also results higher error, since σ2 plays the role of observa-
tional noise, that is, when σ2 grows, the observed expression
values of genes get closer in ON and OFF situations.

6. CONCLUSION AND FUTURE WORK

In this paper, we studied the classification of the Boolean gene
regulatory networks upon the observation of the gene expres-
sion trajectories in the presence of missing data. We proposed
an algorithm to estimate the parameters and infer the net-
works based on the observed training trajectories, and used
the plug-in Bayes classifier to classify the healthy and can-
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Fig. 1: (a) Average classification error vs. D for pmiss =
0, 0.1, 0.2, 0.5, (b) Average classification error vs. m for n =
4, · · · , 8, (c) Average classification error vs. m for pmiss =
0, 0.1, 0.2, 0.5, (d) Average classification error vs. m for σ =
20, 60, 100, 200.

cerous networks. Due to the lack of space, we only provide
part of analysis here. However, we are performing more thor-
ough analysis of this scenario in our full version paper and
comparing it with RNA-seq which reveals expression values
averaged over unsynchronized multiple-cell scenarios.
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