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ABSTRACT

Epithelium-stroma classification is always considered as an
important preprocessing step for morphological quantitative
analysis in image-based histological researches of oncologic
diseases. However, large-scale accurate ground-truth label-
ing is expensive in histopathological image analysis, thus
the classification performances will still be limited with the
insufficient labeled training samples. Considering that acqui-
sition of public unlabeled histopathological images is much
cheaper, an epithelium-stroma classification framework is
developed, based on the deep convolutional neural network
framework and the strategies of self-taught learning. The
method has the ability of taking advantage of large-scale unla-
beled public histopathological data as auxiliary data, and then
transferring the knowledge to enhance the performances in
epithelium-stroma classification with limited labeled training
data. The experiments demonstrate that the proposed method
outperforms traditional CNNs when the labeled training data
size is decreasing dramatically.

Index Terms— epithelium-stroma classification, convo-
lutional neural networks, self-taught learning, histopatholog-
ical image analysis, transfer learning

1. INTRODUCTION

Epithelium and stroma are two basic types of animal tissues,
as shown in Fig.1. Epithelium-stroma segmentation is rec-
ommended as one of the most widely-used preprocessing
operations in histopathological image analysis . For example,
epithelium-stroma ratio, is always recognized as an indepen-
dent prognostic indicator in many in oncology researches
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[1-2]. It also has been reported in recent studies that mor-
phological patterns in stroma are strongly associated with the
prognostic information in breast cancer [3]. According to the
recent literature, most of the contributions treat epithelium-
stroma segmentation as a pattern recognition problem. That
is, histopathological images are partitioned into many image
patches at first, and then these image patches are binarily
classified into epithelium or stroma with some supervised
learning methods [4-5]. In the work described here, we only
focus on the step of image patches classification, since higher
classification accuracy denotes better pixel-wise epithelium-
stroma segmentation performances. Feature extraction is a
crucial step in supervised recognition frameworks, and it can
be briefly classified into two categories for epithelium-stroma
recognition: hand-crafted features and data-driven features.
Texture, color, and their combinations, are most widely-used
hand-crafted features in epithelium-stroma classification [6].
Deep learning strategies have received tons of attentions in
computer vision recently, especially in pattern classification
problems [7]. These end-to-end data-driven approaches in
deep neural networks attempt to extract hierarchical features
with strong representive power from large amount of train-
ing data automatically via the multi-layer architecture [8].
Epithelium-stroma classification framework with convolu-
tional neural networks (CNNs) have been reported, and the
results demonstrated that this CNNs based method outper-
form hand-crafted features, e.g. local binary pattern [5, 9].
Large-scale labeled training data is prerequisite in the CNNs
based classification. However, in the real-world application, it
will be huge cost for the pathologists to acquire large annotat-
ed labeled data in each specified dataset, since the large-scale
ground-truth labeling is tedious and time-consuming.

The work described here are motivated based on the two
observations. Firstly, more and more histopathological im-
ages datasets are public online as challenges or for algorithm
validations, and tons of glass slides are generated and scanned
into digital images in the hospitals every day in the real-world
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application [10-12]. Large-scale histopathological image da-
ta is easy to acquire, however, most of them are unlabeled,
since accurate ground-truth from pathologists is very expen-
sive. Secondly, although the public histopathological images
have significantly different appearances from various datasets
due to different generation procedures, they still share limited
number of basic structural patterns, e.g. nuclear, cytoplasm,
gland, and mitosis.

Self-taught learning, a category in transfer learning, is
proposed to predict the labels of testing samples in the target
domain with the limited training samples in the target domain
and the large-scale unlabeled auxiliary data in the source do-
main simultaneously [13-15]. The method assumes that the
large-scale unlabeled data in source domain can be utilized
to learn the basic structures that have the ability of repre-
senting data in the target domain. Considered that unlabeled
histopathological images are much cheaper to acquire than
labeled data, and the structure patterns are somehow similar
across different histopathological images, the proposed work
aims to exploit and take advantage of the information shared
across different histopathological datasets without labels in-
formation. Thus the epithelium-stroma classification perfor-
mances with limited labeled training data in the target domain
will be enhanced, and then the burdens of training data label-
ing will be reduced. It should be mentioned that self-taught
learning is different with semi-supervised learning, as the data
in source and target domains may belong to different classes
[15], for example, in the proposed work, target domain con-
tains epithelium and stroma data, but source domain contains
various kinds of histopathological image data, which are not
limited to epithelium or stroma.

Therefore, an epithelium-stroma classification method
based on CNNs and self-taught learning is proposed. The
contributions of the proposed works can be summarized that
the method introduces the strategies of self-taught learning
to CNNs, in order to take advantages of large-scale public
unlabeled histopathological data as the auxiliary data. There-
fore, the epithelium-stroma classification performances can
be enhanced when the labeled training samples are limited,
and then the burden of ground-true labeling is reduced in the
real-world applications. In addition, there is no requirement
of fine-tune in CNNs anymore.

2. METHODS

In the section, the basic idea of self-taught learning will be
reviewed briefly at first, and then proposed method will be
described in details. As defined in transfer learning, source
domain is denoted as S, and target domain is denoted as T
[13]. In self-taught learning, data in source domain is denot-
ed as {xS

i }
m
i=1, m is the sample size. Data in target domain

is denoted as {xT
i }

n
i=1, where n is the sample size in target

data [14]. The data in target domain are divided into labeled
training samples and unlabeled testing samples. The method

Fig. 1. Examples of image patches from epithelium (top row)
and stroma (bottom row) from histopathology images.

is designed to predict the labels of testing sample, with the
limited labeled training samples in target domain and the un-
labeled auxiliary data from source domain. Self-taught learn-
ing consists of two steps of sparse coding [15].

Step 1 A dictionary D = [d1, ...dr] is learned from the
auxiliary unlabeled data in source data, with the object func-
tion with minimizing reconstruction error:

Js(D, α
S
i ) =

m∑
i=1

(||xS
i −DαS

i ||22 + λ||αS
i ||1)

s.t.||dj ||2 ≤ 1,∀1 ≤ j ≤ r
(1)

where r is the atom number of the dictionary D, λ > 0 is the
penalty parameter, αS

i is the representation coefficient.
Step 2 The data in target domain are sparse represented

by the dictionary D learnt in step 1, and then the representa-
tion coefficients are assigned to the data in target domain as
the extracted features [15].

Jt(α
T
i ) = ||xT

i −DαT
i ||22 + λ||αT

i ||1,∀1 ≤ i ≤ n (2)

where αT
i is the representation of xT

i with respect to D.
Therefore, the labels of the testing samples in target domain
can be predicted by the extracted features αT

i and any super-
vised classifier, e.g. logistic regression. It can be observed
that the feature extraction procedure in step 2 can be treated
as a procedure of single-layer representation. Thus, the major
contribution of self-taught learning can be summarized that
the basic structure patterns can be learnt from the large-scale
unlabeled auxiliary data in source dataset at step 1, and then
they are considered as the knowledge to be transferred to the
target domain to enhance the reconstruction-based classifica-
tion performances in step 2.

As mentioned in the introduction, tons of literatures have
demonstrated that CNNs has the ability of extracting high-
level representative features due to its multi-layer architecture
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[16-17]. In CNNs, convolutional kernels are the key parame-
ters, which are randomly initialized at first, and then are esti-
mated from the large-scale labeled data via back-propagation.
The knowledge to be transferred to target domains are actu-
ally some patterns which are assumed to be shared with the
target domain and the source domain. Therefore, we proposed
a CNNs framework with the strategies of self-taught learning,
where the atoms in dictionary from the representation pro-
cedure in eq.(1) are assigned as the convolutional kernels in
CNNs to replace random initialization. The framework is de-
signed to take advantage of the knowledges learnt from the
unlabeled data, which is much cheaper to acquire than the la-
beled training data in target domain.

3. EXPERIMENTS

3.1. Datasets descriptions

There are two kinds of datasets utilized in the proposed work,
breast cancer datasets (D1), and a dataset of combination
of public H&E stained histopathological images (D2). Two
breast cancer datasets in D1, which are acquired from two
separate and independent cohorts, Netherland Cancer Insti-
tute (NKI, 248 patients, 778 images) and Vancouver General
Hospital (VGH, 328 patients, 664 images) [3, 10]. Both
datasets consist hematoxylin H&E eosin(H&E) stained histo-
logical images from breast cancer tissue microarrays (TMAs).
Images from both datasets are scanned at a 20X optical mag-
nification, and each of them is with size of 1128×720. The
epithelium and stroma areas are manually labeled by pathol-
ogists as the ground-truth in all the images of both NKI and
VGH. Image patches with the size of 50×50 in epithelium
and stroma areas are randomly selected, and then training and
testing data can be generated, as shown in Table 1.

Second dataset D2 consist of a combination of public
H&E histopathological images from different resources. 45
images are downloaded from the public datasets [11-12], and
30 images are coming from the searching results from google
images with the retrieval words of ’H&E histopathological
images’. Since H&E is the most widely-used staining method
in histology research, it is very easy to find large-scale H&E
stained histopathological images in the internet. Therefore,
the H&E histopathological images in the dataset are generat-
ed from different cancers, with different magnifications, and
are acquired with different scanners. All the images in the
D2 are unlabeled, and then 12,000 image patches with the
size of 50×50 in unlabeled D2 are randomly selected as the
auxiliary data.

3.2. Implementation details

To emphasize the contributions of introducing self-taught
learning strategy, in the proposed work, the architecture of
CNNs without auxiliary data is implemented with LeNet,
which includes two convolutional layers and two maximum

Table 1. The number of training and testing image patches in
D1 for algorithm validation.

Data Tissue Training data size Testing data size
Epithelium 5,500 20,000NKI

Stroma 5,500 20,000

Epithelium 3,000 25,000VGH
Stroma 3,000 25,000

Fig. 2. Example images in dataset D2, left: an image from
public dataset [12]; right: an image from google image

pooling layers [16]. The results will be treated as the base-
line for following comparisons. The size of convolutional
kernels is set to be 5×5, and the number of kernels each
convolutional layer is eight. In the implementation of the pro-
posed method, since the dictionary learning in the first step in
self-taught learning is based on image reconstruction, we use
principle component analysis (PCA) as a simplified version.
The eigenvectors corresponding to the first eight components
are chosen as the dictionary, which are then utilized as the
convolutional kernels in the following CNNs. That is, instead
of random initialization and fine-tune with back-propagation
in traditional CNNs, the convolutional kernels are estimat-
ed with eq.(1) directly from D2 without any fine-tune. The
implementation of CNNs(LeNet) with pre-defined kernels
are the same as in [18]. Similar as in the baseline, there are
two convolutional layers and two maximum pooling layers
in the architecture of proposed method, and the features of
training and testing samples can be extracted after the fully
connection layer followed by the last pooling layer. Finally,
support vector machine (SVM) is applied as the classifier in
the binary recognition. The size of convolutional kernel and
the number of feature maps in each layer of proposed method
are set to the same as in CNNs, for a fair comparison.

Algorithms validation on epithelium-stroma classification
is implemented in the two datasets in D1 individually. As
shown in Table 2, six experiments belonging to three cate-
gories are designed. The first category (first and second rows)
is called baseline, where the classification is trained and tested
with the decreasing labeled training data in the target domain
without auxiliary data. Classifications in the second catego-
ry employ the alternative dataset in D1 as the auxiliary da-
ta, as the third and the fourth rows in Table 2. It should be
mentioned that the labels in the source domain are not used,
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Table 2. Experiments for algorithm validation on epithelium-
stroma classification with different settings of source data and
target data.

Source Domain
(auxiliary data) Size of auxiliary data Target Domain

−− −− NKI
−− −− VGH

VGH 12,000 NKI
NKI 12,000 VGH
D2 12,000 NKI
D2 12,000 VGH

although the ground-truth is available in D1. In addition, im-
age patches in NKI or VGH as auxiliary data are randomly
selected from the images with size of 50×50, so they may be
different from the training and testing data in Table 1. In the
third category, unlabeled dataset D2 is applied as the auxiliary
data. In all the experiments, the labeled training sample size
is decreasing from 20% to 4% of the original labeled training
data size in Table 1. The testing sample size is the same as in
Table 1 for a fair comparison.

Fig. 3. Average classification accuracy comparisons of
epithelium-stroma classification in NKI via traditional CNNs
and the proposed method. The results of proposed method
with the auxiliary data from both VGH and D2 are provided.

3.3. Experiments results

The results of experiments from three categories are provided
and plotted in Fig.3 and Fig.4. It can be observed that pro-
posed method outperforms traditional CNNs with the auxil-
iary data either from D1 or D2 in both VGH and NKI, when
the size of labeled training data is decreasing dramatically.
It also can be observed the comparisons between two kinds
of auxiliary data with the proposed method. The classifica-

Fig. 4. Average classification accuracy comparisons of
epithelium-stroma classification in VGH via traditional CNNs
and the proposed method. The results of proposed method
with the auxiliary data from both NKI and D2 are provided.

tion performances is better when the images from D1 are em-
ployed as the auxiliary data, and this can be explained that the
two datasets in D1 are coming from the same cancer, and are
scanned at the same scanning magnification, thus they share
more similar basic structure patterns with each other.

4. CONCLUSIONS

Epithelium-stroma classification is one of the most common
preprocessing steps in image analysis for quantitative histol-
ogy research. Labeled data in histopathological images are
always insufficient to estimate the large amount of parame-
ters in CNNs, but it is much cheaper to retrieval large num-
ber of unlabeled histopathological images from the internet.
Therefore, the paper proposes a epithelium-stroma classifica-
tion framework with CNNs and the strategies of self-taught
learning. Basic structure patterns are learnt as knowledge
from large scale unlabeled auxiliary data during self-taught
learning, and then are transferred to estimate the convolu-
tional kernels in CNNs. Based on the experimental results,
the transfer knowledges have the ability of enhancing the per-
formances of proposed image patch based epithelium-stroma
recognition, if the labeled training samples are strongly in-
sufficient. The proposed method can be also considered as a
tool for other pattern recognition problems in histopathologi-
cal image analysis, since the high-quality ground-truth acqui-
sition from pathologist is always very expensive in real-world
application.
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