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ABSTRACT

This paper proposes a reliable 3D fish tracking method
using a novel master-slave camera setup. Instead of conven-
tional dynamic models that rely on prior knowledge about
target kinematics, the proposed method learns the kinematic
model with a Long Short-Term Memory (LSTM) network.
On this basis, the 3D state of fish at each moment is pre-
dicted by LSTM network. We propose to use an innovative
master-view-tracking-first strategy. The fish are first tracked
in the master view. Cross-view association is then established
utilizing motion continuity and epipolar constraint cues. Ex-
periments on data sets of different fish densities show that
the proposed method is effective and outperforms the state-
of-the-art methods.

Index Terms— 3D tracking, fish school, master-view-
tracking-first strategy, kinematic model, LSTM network

1. INTRODUCTION

Visual tracking is an effective, convenient, and economic way
to acquire motion data of individuals in fish schools to study
their behavior, which has attracted many researchers investi-
gating the behavior of fish school, whose value is not limited
to biological research but may also be helpful in areas e.g.,
multi-agent robot design [1] and computer graphics [2].

Multi-object tracking using multiple synchronized and
calibrated cameras is the most effective way to obtain accurate
and complete motion data of fish school. Most existing fish
tracking methods are limited in 2D space because many fish
behavior experiments use shallow water, in which fish swim
in almost the same plane. Software such as ANY-mazer and
EthoVisionr has been widely used by biologists [3, 4]. Qian
et al. [5] applied Determinant of Hessian (DoH) to detect fish
head and Kalman filter to track them. It can track dozens of
fish under occlusions in 2D. Alfonso et al. [6] proposed an
identity preserved 2D tracking method based on an intensity
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Fig. 1. Workflow of the proposed method.

distribution feature. Cross-frame data association is accom-
plished by feature matching. However, as fish swim in 3D
space, losing the depth information will affect the accuracy
of motion data and integrity of behavior researches. There-
fore, 3D tracking is definitely more essential and valuable.
Techniques such as particle image velocimetry (PIV) can
be used to investigate behavior in 3D [7], but are not direct
ways to obtain the motion data and are largely limited by
the space resolution. Several proposals used mirrors to con-
struct a stereo-vision system [8, 9]. Nimkerdphol et al. [10]
used stereo cameras and perspective correction techniques to
obtain 3D coordinates of swimming zebrafish. Voesenek et
al. [11] and Butail et al. [12] developed parameterized 3D fish
models and the methods can obtain the full-body trajectory of
each individual in a fish school with small quantity (<8 fish).

In a word, 3D fish tracking remains a challenging task
due to the vast change of appearance in images, similar ap-
pearance among individuals and frequent occlusions. We pro-
pose to learn the 3D kinematic model of fish individuals by a
Long Short-Term Memory (LSTM) network. A novel master-
view-tracking-first strategy is applied based on a master-slave
camera setup. Different detection methods are proposed for
master and slave views (cf. Sec 3.1). Fish are first tracked in
master view (top view) guided by the LSTM prediction (cf.
Sec 3.2). Then 2D tracking results in master view and de-
tection results in slave views are associated to reconstruct the
3D trajectories based on motion continuity and epipolar con-
straint (cf. Sec 3.3). The workflow is shown in Fig. 1.
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2. KINEMATIC PATTERN MODELING

The goal of a tracking system is to recursively estimate the
target’s motion state Xt at each moment given the observa-
tion sequence Z1:t. The dynamic model in a tracking system
calculates the posterior density of the target’s motion at each
moment which is an important part of the system [13]. In
conventional Bayesian tracking framework, the target’s mo-
tion process satisfies the Markov property, such as first-order
Markov chain rule. But in the fish tracking scenario, the state
of fish depends on a motion process in several consecutive
frames where first-order Markov assumption does not hold.

2.1. Learning kinematic model with LSTM network

Long Short-Term Memory (LSTM) network [14] has shown
superior power in processing sequential data with varying
lengths and learning long-term dependencies than standard
recurrent neural network (RNN). Hence we model the fish’s
motion process by learning an LSTM network. The learned
kinematic model which contains a single LSTM layer, (see
Fig. 2(a)) can be implemented in a tracking method to guide
the tracking process. The network input is the velocity se-
quence V 1:t; output is h1:t, where ht is the hypothetical
velocity vector at time t + 1, written as Ṽ t+1. Velocity se-
quences are used instead of position sequences because the
information obtained from spatio-temporal data has higher
accuracy [15]. Then the predicted state at time t + 1 is
calculated as X̃t+1 = Xt + Ṽ t+1.

2.2. LSTM training

The LSTM network for midline kinematic patterns modeling
is trained offline before tracking. The fish are first tracked
using conventional Kalman filter. The resultant midlines are
then checked manually and the incorrect ones are removed.
Then the velocity sequences are calculated based on the track-
ing results. The velocity sequences with different lengths are
randomly selected from these long sequences as training sam-
ples for the LSTM network. We selected totally 50000 veloc-
ity sequences of different fish of 8∼20 frames in length to
be used as training sequences. The LSTM network is trained
with Backpropagation Through Time (BPTT) under a matrix-
based batch learning paradigm [16].

3. THE TRACKING METHOD

The appearance of fish is more stable and undergoes less ap-
pearance variance in top view images than side view ones,
which consists of a rigid head part and a belt-like body part.
Hence 2D tracking in top view can obtain higher accuracy, in-
spiring us to apply a master-slave camera setup: one camera
capturing top view images is the master view and the other
two cameras capturing side view images are the slave ones.

The fish school is first tracked in master view in 2D guided
by the 3D prediction of LSTM network, then the 2D trajec-
tories in master view and detection results in the two slave
views are associated to reconstruct the 3D trajectories.

3.1. Fish detection

The appearance of fish in master and slave view images
varies. We therefore propose different methods for fish detec-
tion in different views.

3.1.1. Fish detection in master view

Based on the observation that in top view images, fish head
appears as partial ellipses and the head pixels are darker than
background ones. We detect fish head using a scale-space De-
terminant of Hessian (DoH) blob detection method [5]. Af-
ter fish head detection in master view, the coordinates of fish
head points locating at about the middle of the two fish eyes
are obtained, as shown in Fig. 2(b).

3.1.2. Fish detection in slave view

In side view images, fish eye region appears as concentric
circles, it is the part of fish with minimal change during the
tracking period. Gabor filter is a powerful feature extrac-
tion strategy widely used in image texture analysis applica-
tions [17–19] that can extract orientated feature points with
obvious characters, and it’s robust under illumination, view-
ing direction and appearance changes [20]. The proposed eye-
focused fish detector applies Gabor filters with varying sizes
and orientations to localize fish eyes. The 2D Gabor filter is:

ψk⃗(x⃗) =
k⃗2

σ2
exp(− k⃗

2x2

2σ2
)[exp(ik⃗x⃗)− exp(−σ

2

2
)] (1)

in which k⃗ determines the wavelength and orientation of the
kernel, σ indicates the ratio of window width to wavelength.
The filter needs to sample in both space and frequency do-
main, written as:

k⃗ = kve
iϕu (2)

where kv =
kmax

fv
, ϕu =

uπ

8
, kmax =

π

2
, σ = 2π. f

is the spacing factor between kernels in frequency domain,
set as

√
2. Totally 2 frequency levels (v ∈ {0, 1}) with 4

orientations (u ∈ {0, 2, 4, 6}) are applied to generate local
descriptions of an image at different scales and orientations.
The input of the Gabor filter set is image patches of size 25×
25. The dimension of output feature is 25 × 25 × 8 = 5000.
However, the dimension is too high to be directly used as the
input of a classifier. According to our experiment, the first
40 components preserve more than 95% of the information
of the original feature vector. Hence Principal Component
Analysis (PCA) is applied to reduce the feature vector to 40
dimensions. Then the dimension reduced features are fed into
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Fig. 2. (a). Illustration of the unfolded LSTM network in the proposed method; (b). Sample detection results of top and side
views. In top view image, the blue ovals plot the fitted ellipses, the red points are the resultant fish head points. In side view
image, blue points plot the candidate fish eye points, red points are the resultant fish head points after clustering.

a pre-trained SVM classifier to judge if it is a real fish eye or
not, resulting in several adjacent candidate fish eye points for
each fish eye. Afterwards, Max-Min Distance clustering [21]
is performed based on these candidate points and center of
each cluster corresponds to each fish head point, as shown in
Fig. 2(b). The detected fish head points in the two slave views
are ZS1,t and ZS2,t respectively.

Detection missing may occur when the back of one fish
individual is facing the camera, however, in such case, the in-
dividual can be detected in the other slave view and the master
view. Therefore, the missing object can still be tracked.

3.2. 2D preliminary tracking in master view

2D tracking in master view is the basis of the following cross-
view association and 3D trajectory reconstruction steps. In-
spired by the observation that in master view images the dis-
placement of fish head is small resulted from the high frame
rate (100fps) and the appearance of fish head varies slightly
compared to other body parts, we apply Kalman filter [22] to
track fish head points in 2D.

Cross-frame data association is one of the core steps of
multi-object tracking, which we formulate as a global opti-
mization problem. Totally two cues are applied to calculate
the weight term ω(Xm,t

i , Zm,t
j ), which measures the proba-

bility of target i being associated with target j in master view.

• Motion continuity

Motion continuity cue measures the distance between the
predicted 2D state in master view reprojected from the 3D
state X̃t

i predicted by LSTM network and detection Zm,t
j .

The predicted 3D state functions as a constraint for 2D
tracking in master view. Based on the output of LSTM net-
work, the predicted velocity Ṽ t of each target is obtained.
Then the predicted coordinates of head points are deter-
mined, written as X̃t = {X̃t

i = (x̃ti, ỹ
t
i)|i = 1, ..., n}.

Then the motion continuity term is calculated as:

pm(Xm,t
i , Zm,t

j ) = exp[−d(Pm(X̃t
i ), Z

m,t
j )] (3)

where Pm(X̃t
i ) is the predicted 2D state in master view

reprojected from predicted 3D state X̃t
i .

• Appearance coherency

Appearance coherency term pa(X
m,t
i , Zm,t

j ) calculated by
Normalized Cross Correlation (NCC) [23] measures the
similarity of fish head image patches determined by pre-
dicted 2D state X̃t

i and detection Zm,t
j .

In summary, the weight term of cross-frame data associ-
ation is defined as ω(Xm,t

i , Zm,t
j ) = αpm(Xm,t

i , Zm,t
j ) +

βpa(X
m,t
i , Zm,t

j ). After cross-frame data association, for
those targets that do not find association, their states are up-
dated as the predicted one, written as Xm,t

i = Pm(X̃t
i ). With

the guidance of LSTM prediction, the correct and complete
2D trajectory of each object is obtained. 2D tracking result at
time t consists of the updated state of each object, denoted as
Xm,t = {Xm,t

i = (xm,t
i , ym,t

i )}.

3.3. Cross-view data association

The cross-view association step aims to associate the 2D
tracking results in master view and detection results in two
slave views. Then 3D trajectories can be reconstructed by the
corresponding coordinates in at least 2 views.
• Motion continuity

Denote Psν (X̃
t
i ) as the point in slave view ν reprojected

from predicted 3D state X̃t
i by LSTM network. The prob-

ability of detection Zsν ,t
j in slave view ν being associated

with X̃t
i is inversely proportional to Euclidean distance be-

tween them, calculated as:

pm(Xm,t
i , Zsν ,t

j ) = exp[−d(Psν (X̃
t
i ), Z

sν ,t
j )] (4)

• Epipolar constraint

Epipolar constraint determines the correspondence of ob-
jects in master and slave views. Assume Lsν ,t

i is the epipo-
lar line in slave view ν corresponding to Xm,t

i in master
view. The epipolar constraint term pe(X

m,t
i , Zsν ,t

j ) is in-
versely proportional to the Euclidean distance from Zsν ,t

j

to Lsν ,t
i , calculated as:

pe(X
m,t
i , Zsν ,t

j ) = exp[−d(Lsν ,t
i , Zsν ,t

j )] (5)
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Fig. 3. Resultant 3D trajectories of: (a). V1; (b). V2; (c). V3.

Combing the two cues, the weight term is defined as
W

(
Xm,t

i , Zsν ,t
j

)
= αpm

(
Xm,t

i , Zsν ,t
j

)
+βpe

(
Xm,t

i , Zsν ,t
j

)
.

We set α = β = 0.5, the 3D coordinate is then retrieved by
triangulation technique [24].

4. EXPERIMENTS

4.1. Experiment setup

Three geometrically calibrated and temporally synchronized
monochrome high speed cameras (100fps) were orthogonally
placed to capture videos of the zebrafish school (2∼3 cm in
length) swimming in a water tank. Each of the three video
clips is 2000 frames in length. Descriptions of the videos
are shown in Table. 1. The system is implemented with
MATLABTM and the LSTM network which consists of one
layer and 20 hidden units is adapted from [16].

4.2. Experiment results and discussions

We adopt 5 widely used metrics [25] to evaluate the perfor-
mance of the proposed method and compare it with the other
two state-of-the-art methods along with the proposed method
without LSTM network. The results are shown in Fig. 3 and
Table. 2. idTracker [6] is a recently proposed identity pre-
served 2D tracking method based on feature matching, which
can be extended to 3D by associating the identical individual
across views. Liu et al.’s method [26] is a 3D tracking method
for large swarm of objects, which can be directly applied to
track fish group. The results show that when group density
increases that leads to high OF, the performance of idTracker
drops significantly, because high OF makes feature matching
in each view less robust, especially in side views, resulting in

Table 1. Description of the 3 data sets
Group size OF in top view OF in side views

V1 5 0.40% 6.26%
V2 10 17.14% 45.21%
V3 20 24.17% 63.33%
OF indicates the occlusion frequency. The video clips are available online at:
http://www.cv.fudan.edu.cn/fishtracking3d.htm

Table 2. Performance comparison with other methods
Method P R F1 Frag IDS

V1

Ours 0.977 0.992 0.984 0.9 0.7
Ours* 0.968 0.987 0.977 1.4 0.9

Liu et al. 0.967 0.975 0.971 2.9 1.1
idTracker 0.889 0.950 0.918 6.3 1.9

V2

Ours 0.961 0.971 0.966 3.9 0.9
Ours* 0.953 0.967 0.960 4.8 1.1

Liu et al. 0.942 0.958 0.950 6.3 3.8
idTracker 0.833 0.907 0.868 36.9 7.3

V3

Ours 0.920 0.925 0.922 5.7 1.9
Ours* 0.913 0.920 0.916 6.2 2.5

Liu et al. 0.812 0.854 0.832 11.2 7.3
idTracker 0.285 0.436 0.345 122.7 15.0

Ours* denotes the proposed method without LSTM. P, R, F1, Frag and IDS corre-
spond to Precision, Recall, F1-score, Fragments and ID Switches respectively.

unreliable 3D trajectories. Liu et al.’s method obtains almost
the same scores with the proposed method on V1 and V2,
but shows fast decrease as OF increases a lot in V3 (>60%
in slave views), because their method is based on particle fil-
tering, the tracking system may accept particles even if they
are only observed in one view, and the system lacks a well-
designed data association strategy. The proposed method out-
performs the others thanks to: 1) the specific detection meth-
ods for different views; 2) the learned kinematic model using
LSTM network; 3) the master-view-tracking-first strategy; 4)
the well-designed data association strategy.

5. CONCLUSION

In this paper we propose to learn the kinematic model of fish
by an LSTM network and implement it in a 3D fish track-
ing system to predict the targets’ states at each moment. A
novel master-view-tracking-first strategy is proposed on the
basis of a master-slave camera setup. Fish are first tracked in
master view guided by the LSTM prediction. Then cross-
view association is established based on motion continuity
and epipolar constraint cues. Experiments on data sets of dif-
ferent fish densities show that the proposed method outper-
forms the compared state-of-the-art methods.
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