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ABSTRACT

This paper explores in vivo disease detection by nanomachines

sensing signature biomarkers in an aqueous medium via the

principles of molecular distributed detection from a theoretical

perspective. The biomarker propagation model is based on solutions

to the Fokker-Plank equation, where comparisons in model accu-

racy between one-dimensional and three-dimesional variants are

compared and contrasted. The impact of biomarker absorption by

the nanomachines and the subsequent nonlinear spatial dependence

induced will also be discussed relative to optimal distributed

detection performance.

Index Terms—Molecular Distributed Detection, MDD, Dependent

Observations.

I. INTRODUCTION

The use of nanomachines for the in vivo detection, localization

and possible treatment of disease in the human body, such as cancer,

has been a vision of both science fiction (Fantastic Voyage, 1966)

and medical research for decades [1]–[5]. Today, nanomachines

capable of such aspirations are looking less like science fiction

and more like a real possibility [6]. With that said, establishing

an in vivo network to link these nanomachines remains an open

research topic, predominantly driven by the fact that wireless

communication at nano-scale dimensions is not feasible. There

have been numerous proposals to address this challenge, including

molecular communication (MC) and acoustic signaling [5], [7]–

[12], each having benefits and challenges of their own.

Another significant research opportunity is the actual nanoma-

chine disease detection process. There are some cases where the

disease emits biomarkers or signature molecules that are relatively

rare [3], and others where the biomarker emissions are similar to

naturally occurring biomarkers, such as vascular endothelial growth

factor (VEGF) produced by cancerous tumors [13], [14] [14]. Both

cases present the opportunity for false positives in the detection

scheme, and optimal detection methods represent an open research

topic. We explored this topic at an introductory level in [15],

and introduced the terminology of molecular distributed detection

(MDD).

The goal in [15] was to detect a disease by sensing biomarker

emissions that propagate via Brownian motion with laminar flow

as shown in Fig. 1. There the nanomachines were assumed to

make semi-autonomous decisions regarding the presence of the

disease because of a unidirectional communication channel (with

the laminar flow) and challenges of MC channel memory [8]. Each

nanomachine transmits its local decision molecule to a downstream

fusion center (FC) that fuses all collected communication molecules

to arrive at a summary decision regarding the disease presence.

That work was based on solving the Fokker-Plank equation under

a set of stringent constraints, including no biomarker absorption,
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Fig. 1. Conceptual MDD system with four key components: 1)

Disease releasing molecular biomarkers. 2) N nanomachines. 3)

Communication Channel (described in II-A). 4) Fusion Center.

unimpeded propagation model with no reflecting boundaries (e.g.,

blood vessel wall), and no drift velocity gradient across the vessel

diameter. While it is known that the capillary blood flow velocity

has a parabolic like shape [16], [17], the work in [18] suggests

there is a cell free layer in the capillary with no red blood cells

having near single layer laminar flow, where the nanomachines

and biomarkers might collect. This implies that assuming zero drift

velocity gradient may be appropriate for some in vivo observation

models. However, the constraints on unimpeded biomarker propa-

gation and no absorption may be over simplistic.

This papers contributions will be to explore how nanomachine

biomarker absorption impacts the in vivo probabilistic biomarker

observation model we proposed in [15]. Absorption results in

a hitting-time (e.g., stopping-time) in three dimensional (3-D)

space, where no analytical solution to the Fokker-Plank equation

is known [19]. Because of this, numerical simulation will be used

to establish insight into the complexities of this medium, including

considerations for using a one dimensional (1-D) hitting-time model

in a 3-D space. We will also explore how observations by one

nanomachine, can be influenced by a second nanomachine. This

results in spatially dependent observations that have a significant

impact on MDD disease detection algorithms. In doing so, the

following notation will be used: , is equal by definition, Pr (A|B)
is the probability of event A given event B occurred, ∃ is there

exists, Rn is an n dimensional Euclidean space, and × represents

the Cartesian product of sets.
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II. SYSTEM MODEL

A MDD system has a primary goal of determining if a certain

disease is present or not, and if so, possibly providing a treatment

protocol. These goals require the definition of a MDD model, a

nanomachine dependent detection probability model, and a hypoth-

esis testing formulation or fusion rule.

II-A. Molecular Distributed Detection Model

The conceptual MDD model depicted in Fig. 1 will now be

explored in greater detail. There are four primary components that

comprise the MDD system model:

1) Disease: At a specific location, we assume there is a disease

cells that generates a molecular marker (e.g., biomarker such

as VEGF [13]) at a given rate, κ.

2) Nanomachine: A collection of biological sized machines

labeled as si, i = 1, 2, . . . , N . Each si observes the envi-

ronment for a biomarker(s), makes a local decision regarding

the disease presence every biological clock period (Ts), and

then transmits a message to the FC, reflecting that decision.

The nanomachines are located down flow from disease and

use drift in the aqueous medium to conserve energy until an

initial biomarker is detected, where they hold their position

until acoustically instructed to move via the FC.

3) Communication Channel: Using either MC [9], [15] or

acoustic communication similar to that discussed in [5], the

nanomachines transmit their local decision to the FC.

4) Fusion Center: A nanomachine that fuses the transmitted

local nanomachine decisions and makes a summary decision

regarding the disease being present or not. It has the ability

to acoustically direct the nanomachines operations.

II-B. Nanomachine Probability Model

Suppose a disease emits a biomarker at some Cartesian coordi-

nate position ξ0 = {x0, y0, z0}, with constant emission rate κ. A

single non-interacting biomarker can be modeled in space and time

probabilistically using standard Brownian motion via a stochastic

process {B (t) : t ≥ 0}, where B (t) ∈ R
3 [20]. The probability

density function (pdf) for B (t) can be found using the Fokker-Plank

(a.k.a. Kolmogorov Forward) equation [21]

∂pB (t, ξ)

∂t
=

1

2

3
∑

j=1

3
∑

k=1

∂2Dj,k pB
∂ξj∂ξk

−
3

∑

j=1

∂ vj pB
∂ξj

(1)

for (t, ξ) ∈ (0,∞)×R
3, where pB (t, ξ) is a time dependent pdf

for an emission at a location ξ and time t starting from the origin at

t = 0, Dj,k are diffusion coefficients, and vj is the drift velocity in

direction j. Note, the subscripts on ξ in (1) indicate vector indexes

with ξ1 arbitrarily defined as the x-axis in a Cartesian coordinate

system. Using the MDD formulation in subsection II-A, we set

Dj,k , 2DB when j = k and zero otherwise for anisotropic

diffusion, and set vj = vx if j = 1 and zero otherwise for single

layer laminar flow.

Under certain constraints [20, Ch. 2] and with no absorption, a

solution to (1) is [19]–[21]

pB (t, ξ) =
1

√

(2π)n det (Σ)
e−

1

2
(ξ−µξ)

⊺
Σ

−1(ξ−µξ), (2)

where det (·) is the matrix determinant, superscript ⊺ is the

transpose operator, µξ the mean vector, and Σ a covariance matrix.

Table I. Human Capillary and BA Emission Parameters [16], [17]

Parameter (Symbol) Value Range

Blood Mean Velocity (vx) 1 mm/s 0.5-3.3

Capillary Diameter (L) 8 µm 6-12

Emission Radius (r) 1 nm 0.1-500

For this paper (2) will later be used to validate numerical methods

with µξ = vx · t [1, 0, 0]⊺ + ξ0 and Σ = (2DBt) I, where I is

the identity matrix. Interestingly (2) cannot be used directly to find

the so called hit probability

Pr (∃t > 0 : B (t) ∈ νi) , Pr (hit si) , (3)

where νi is a volume occupied by si centered at ξi. Alternatively,

the backward Kolmogorov equation provides a method to determine

(3) with final condition pB (t, ξ) = 1νi (ξ), where 1νi (ξ) = 1 if

ξ ∈ νi and zero otherwise (e.g., indicator function). However, a

closed form analytical solution for (3) is currently unknown. It is

possible to estimate (3) using a measure theoretic Martin kernel via

[22], [23], [15]

1

2
CapM (νi) ≤ Pr (hit si) ≤ CapM (νi) , (4)

where for any closed set νi in R
d, d ≥ 3, M

(

ξx, ξy

)

=
‖ξy‖d−2

‖ξx−ξy‖d−2
with

∥

∥ξx − ξy

∥

∥ the Euclidean distance, and

CapM (νi) =

[

inf
µ(νi)=1

∫

νi

∫

νi

M
(

ξx, ξy

)

dµ (ξx) dµ
(

ξy

)

]−1

.

(5)

Here µ (νi) is a general Borel measure, not necessarily the

Lebesgue measure, so calculating (5) to bound the hit probability

in (4) is non-trivial. Additionally, when the nanomachines absorb

or impede the flow of a biomarker, then even (1) does not

offer a known analytical solution and numerical methods must

be applied [19]–[21]. For these reasons, we will use the vector

Euler algorithm, which has acceptable strong order and weak order

convergence properties [19, Ch. 10] to estimate (3) after using (2) to

validate the numerical methods applied within the chosen molecular

environment.

II-C. The Molecular Environment

We consider the in vivo environment of a human capillary as

discussed in [15] and references therein. The important system

model parameters used in this paper are defined in Table I. The

biomarkers for this work are assumed to have a radius of 1 nm

with an approximated DB = 10−11 m2

s
, which loosely follows

from the Stokes-Einstein equation [24] DB ≤ KBT

6πµr
, where KBT

is the thermal energy and µ is mobility.

Establishing a baseline for evaluation of the Euler algorithm, we

use (2) and define

fi (t− t0) =

∫

ξ∈νi

pB (t, ξ; ξ0, t0) dξ, t > t0, (6)

to represent the time evolution of the probability a biomarker

is within a given volume νi. Using the parameters in Table I,

Fig. 2 highlights fi (t− t0) for a single biomarker and two non-

absorbing nanomachines modeled as a cube in R
3 of width,

w = 20 nm, one centered at ξ1 = (50, 0, 0) nm and the other at
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Fig. 2. Time evolution probability, fi (t− t0) estimated using 10

000 sample paths and the analytical reference per (6), with DB =
10−11 m2

/s, vx = 1 mm/s, and t0 = 0 with s1 centered at ξ1 =
(50, 0, 0) nm, and s2 at ξ2 = (50, 25, 0) nm.

ξ2 = (50, 25, 0) nm. Notice that the analytical solution using (6)

and numerical method are both included in Fig. 2 to highlight the

accuracy of the vector Euler algorithm used.

The first-passage, or absorption time for an absorbing boundary,

b, is defined as Tb (t) = inf {t ≥ t0; B (t) = b} [21, pg. 79],

which is not equivalent to (3). Solving (1) in R
1 (e.g., 1-D) with

drift does offer a closed form pdf of [9], [21, pg. 79]

pi,b (t) =
b√

4πDB t3
exp

(

− (vxt− b)2

4DB t

)

, (7)

where b is the up flow edge of sensor si (e.g., b = 40 nm for an

si of w = 20 nm, centered at ξi = (50, 0, 0) nm). For reference,

a simulation in R
1 (i.e., x-axis) was also done to validate the

numerical methods, however, these results are not shown because

of space constraints.

Next, a 3-D numerical simulation using the same parameters

specified in Fig. 2 was done, but this time assuming only a single

sensor that absorbs the biomarker and b = ∂νi (i.e., the boundary

of νi), with the experiment repeated at three differing ξi. These

results appear in Fig. 3 with (7) offering an R
1 reference point.

As is well known [21, pg. 79], the results for ξ2 and ξ3 depicted

in Fig 3 clearly indicate that (7) poorly estimates the R
3 hitting-

time pdf and is not entirely applicable to B (t) ∈ R
3 for MC

based on molecule type (see the constraints these results impose

on [9], [11] for an abridged list). In fact, as the nanomachines move

farther off the drift axis, the deviation between (7) and the actual

pdf becomes increasingly pronounced as one would expect. Notice

that pi,b (t) in R
3 is conditioned on the biomarker hitting si, an

implicit requirement in R
1, and is a condition that significantly

impacts MDD as discussed next.

III. NANOMACHINE DEPENDENT OBSERVATIONS

There are critical differences between MDD analysis and that

of traditional wireless DD. Perhaps the biggest difference is that

the biomarker and MC channel have the affect known as channel

memory (see the temporal dependence on fi (t− t0) in Fig. 2

and pi,b (t) in Fig. 3). Another important difference is that a

nanomachines biomarkers observation can place both a temporal
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Fig. 3. First-hitting time pdf pi,b (t) in R
3 when vx = 1 mm/s,

DB = 10−11 m2

/s, s1 centered at ξ1 = (50, 0, 0) nm with (7)

added for reference, s2 at ξ2 = (50, 25, 0) nm, and s3 at ξ3 =
(50, 25, 25) nm, all modeled as a 20 nm cube.
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Fig. 4. First-hitting time pi,b (t), indicating spatial dependence

among sensors, where s1 is centered at ξ1 = (50, 0, 0) nm, s2 at

ξ2 = (100, 0, 0) nm, DB = 10−11 m2

/s, and vx = 1 mm/s.

and a non-linear spatial dependence on the observations of other

nanomachines. For the purposes of this paper, we will assume

the nanomachines are fixed in position, resulting in a stationary

diffusion process with no temporal dependence. Specifically, if Ej

represent a biomarker release at time tj , then pB (t, ξ; ξ0, tj) for

Ej is identical to pB (t, ξ; ξ0, tk) associated with Ek ∀j, k.

Exploring spatial dependence in greater detail, a simulation using

two sensors in R
3, both located along the x-axis was done. These

results appear in Fig. 4 with the simulation parameters listed in

the figure caption. There are four key aspects on display in Fig. 4.

First, pi,b (t) is shown for a non-stopping time (No Absorption),

a stopping-time (Absorption), and the 1-D analytical reference

solution using (7). Second, the biomarker Pr (hit si) is displayed in

the figure legend. Third, the down-flow sensor s2 is clearly spatially

dependent on the up-flow sensor s1, with Pr (hit s2) decreasing

by a factor of three if s1 influences (absorbs) the biomarker.

Additionally, p2,b (t) with absorption, is slightly shifted to the
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right in time, representing the “longer” path a biomarker must

take to pass around s1, while interestingly, the shape of the pdf

is little changed. Forth, the up-flow sensor s1 is not influenced by

the down-flow sensor s2 (i.e., non-linear spatial dependence). One

additionally complexity of MDD relative to traditional DD theory

is that some biomarkers (e.g., VEGF) occur naturally, denoted by

Fi. Clearly, when the disease is absent, this phenomenon results in

a non-zero Pr (hit si), leading to a type I error. At the same time, a

sensor may detect a naturally occurring biomarker when the disease

is present, adding complexity to the type II error analysis.

IV. DATA FUSION

With an understanding of the hit probability for both indepen-

dent and spatially dependent nanomachine observations, we now

shift gears and explore MDD data fusion at the FC. When a

single disease is to be detected, MDD can be formulated as a

binary hypothesis testing problem with H1 : disease present,
and H0 : disease absent. All N nanomachines deciding locally

H1 or H0 and forward this decision to the FC in a parallel

fashion (see Fig. 1) either using MC or acoustically. Establishing

a statistical framework, let each local decision received at the FC

be represented as a random variable, Ui, with possible realizations

of ui = 1 for H1 or ui = 0 for H0. The false alarm probabil-

ity, pfa,i = Pr (Ui = 1 |H0) can be determined analytically or

estimated, while the detection probability, pd,i = Pr (Ui = 1 |H1)
depends on both naturally occurring and disease generated biomark-

ers. Specifically,

pd,i = Pr (Bi) + Pr (Fi)− Pr (Bi) Pr (Fi) ,

by the inclusion-exclusion principle, assuming the naturally oc-

curring and disease generated biomarkers events are independent,

where event Bi represents the latter biomarker.

Even under the assumption of spatially independent observations,

determination of pfa,i and pd,i ∀i appears formidable in an in

vivo environment. However, should these values be available via

calculation or numerical analysis (e.g., genie aided analysis) a

bound on detection performance can be obtained using the optimal

Chair-Varshney (CV) fusion rule for conditionally independent

observations [25]

Λ = log
Pr (H1|u)
Pr (H0|u)

= log
π1

π0
+

N
∑

i=1

ui log
pd,i
pfa,i

+
N
∑

i=1

(1− ui) log
1− pd,i
1− pfa,i

H1

≷
H0

ℓ, (8)

where Λ is a sufficient statistic, u = {u1, u2, . . . , uN} are the

realizations of each Ui, π1 = Pr (H1) and π0 = Pr (H0), and ℓ is

a threshold chosen to meet a desired performance goal(s). Because

determination of (8) is so problematic in vivo, an alternative sub-

optimal fusion rule is the counting or K out of N fusion rule

Λc =

N
∑

i=1

ui

H1

R
H0

K, (9)

which simply counts the total number of observations and compares

that value to a threshold K.

When the observations are spatially dependent, then a more

complex analysis is required. Standardizing on notation common

to hypothesis testing problems, suppose Xi is the event that a
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Fig. 5. ROC curves comparing the CV, (8), and the counting fusion,

(9), rules against the counting fusion rule with spatially dependent

observations using monte-carlo simulation with 2 000 iterations,

where N = 30, pfa,i , 1
5
p̄d ∀i with p̄d = 1

N

∑N

i=1 pd.i, and each

pd,i is determined numerically.

biomarker hits sensor si and that Xi has a temporal pdf given

hypothesis Hj and emission rate κj of pXi
(xi|Hj , κj). Notice

that κj represents the effective biomarker emission rates with

and without the disease present. Then for spatially dependent

observations, the joint pdf

pX (x1, x2, . . . , xN |Hj , κj) 6=
N
∏

i=1

pXi
(xi|Hj , κj) , (10)

which is evidenced by the results in Fig. 4. Improved detection

performance follows from the generalized likelihood ratio test

(GLRT)

L (X) =
π (κ̂1) pX (x|H1, κ̂1)

π (κ̂0) pX (x|H0, κ̂0)

H1

R
H0

γ, (11)

where the maximum a posteriori (MAP) estimate is

κ̂j = argmax
κj

π (κj) pX (x|Hj , κj) , j = 0, 1.

However, determination of pX (x|Hj , κ̂1) in (11) is complex

because of (10). Perhaps the statistical theory of copulas may be

useful in studying (11) given its ability to estimate a joint pdf

when the observations are non-linearly spatially dependent [26].

Nevertheless, we show the receiver operating characteristic (ROC)

curves for randomly located set of senors in a cone pattern using

fusion rules (8) and (9) if the observations are independent, and

again using (9) when the observations are spatially dependent in

Fig. 5. Notice that when the observations are spatially dependent,

the detection performance of the counting rule fusion drops signif-

icantly, representing an interesting open MDD research topic.

V. CONCLUSIONS

A Brownian motion model for biomarker propagation and MDD

by a collection of nanomachines was presented. It was shown that

the observations are spatially dependent in a non-linear fashion, and

that this effect opens new and interesting research opportunities,

such as the need for a R
3 hitting-time model, a copula based GLRT,

and a tractable in vivo fusion rule.
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