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ABSTRACT

The Pap test is a manual screening procedure that is used to detect
the precursor lesions of cervical cancer by analyzing changes in nu-
clei and cytoplasms of cervical cells. Due to the sensitivity of the Pap
test to intra- and inter-observer variability, automating the procedure
using digital image analysis test is still an open problem. Within this
context, segmentation of overlapping cervical cells is a key compo-
nent to develop image analysis methods. In this paper, we propose a
framework for segmenting the cytoplasm of each individual cell de-
picted within an image of overlapping cervical cells. The proposed
framework uses a patch-based approach where a parametric active
contour detects, on a patch-by-path basis, the cytoplasm boundary of
each overlapping cell. The active contour within the patch deforms
under the influence of Gradient Vector Flow (GVF) forces computed
based on the local edges depicted in each patch region. Results show
that the proposed framework achieves more accurate cytoplasm seg-
mentation results compared to the current state-of-art methods.

Index Terms— Active contours, overlapping cervical cells, Pap
test, patch-based segmentation, Gradient Vector Flow (GVF)

1. INTRODUCTION

Cervical cancer is one of the most common types of cancer among
women [1]. Since the introduction of the Pap test, a significant de-
crease has been observed in the incidence of cervical cancer and
related deaths. The Pap test, which has been one of the most effec-
tive cancer screening tests, remains the most important technique in
detecting the precursor lesions of cervical cancer. The test is based
on obtaining cells from the uterine cervix and then smearing them
onto glass slides for microscopic examination to detect human pa-
pillomavirus’s (HPV’s) effects. The Papanicolaou (Pap) method is
then used to stain the slides, which makes analysis easier as differ-
ent components of the cells show different colours. The sensitivity of
the Pap test can be affected mainly by the number of cells sampled,
the overlap among them, the poor contrast of the cell cytoplasm,
and the presence of mucus, blood cells, and inflammatory cells [2].
Both intra- and inter-observer variability during the interpretation of
abnormal smears contribute to the wide variation in false-negative
results [3]. In order to tackle these issues, techniques for cell depo-
sition have been improved. Cell deposition techniques purify cells
from a significant portion of blood, mucus, and other debris. Also,
they reduce the overlap among cells increasing the likelihood of cells
occurring on a single focal plane. [4].

The difficulties associated with manual screening and the
promise of early diagnosis have increased the interest on systems
capable of capturing digital images by connecting digital cameras
to microscopes. The resulting digital images can then be used to
develop automated and semi-automated image analysis techniques,
which tend to be more robust and consistent than manual analysis.

These image analysis systems also facilitate a more quantifiable
examination of the smears, which has the potential of increasing the
reliability of the diagnoses [5, 6].

Automated and semi-automated image analysis techniques im-
prove both the sensitivity and specificity of screening, which in-
volves two main tasks: segmentation and classification. Segmen-
tation tasks mainly focus on detecting and segmenting cells bound-
aries, separating them from the background, as well as detecting and
segmenting the corresponding nuclei. Automatic thresholding, mor-
phological operations, and active contour models are the most popu-
lar approaches for biomedical image segmentation [2, 7, 8, 9]. Clas-
sification tasks, on the other hand, focus on classifying individual
cells using, for example, a number of features such as texture, pixel
intensities and shape[10, 11, 12, 13, 14].

Several authors have proposed methods to detect and segment
the nucleus of cervical cells. For example, Plissiti et al. [15] pro-
pose an automated method for the detection and boundary determi-
nation of cervical cell nuclei. This method uses a marker-based wa-
tershed segmentation approach to first find the nucleus boundaries.
It then eliminates false-positive regions by using a binary classifier
with shape, texture, and intensity features. Despite its potential, this
method only focuses on the segmentation of nuclei, which tend to be
depicted with relatively high contrast around the boundaries, and are
thus, easier to segment than cytoplasms.

As the cytoplasm features have been shown to be very useful for
the identification of abnormal cells, the detection of the cytoplasm
regions from isolated cervical cells is also crucial [16]. For example,
Li et al. [12] propose a method using k-means clustering with three
classes to identify nuclei, cytoplasms, and background regions. They
employ snake active contours to refine the nucleus and cytoplasm
boundaries.

Other more recent approaches focus on the individual segmen-
tation of cytoplasms and their corresponding nuclei on images de-
picting overlapping cells. Lu et al. [17, 2] propose a method that
employs a joint optimization of multi-level set functions constrained
by the length, area and shape of cells. The method first detects cell
clumps and all nuclei within those clumps. It then employs sev-
eral levels set functions for each cell within a clump. These levels
set functions interact with each other using both unary (intra-cell)
and pairwise (inter-cell) energy terms. Nosrati et al. [18] propose
a continuous variational segmentation framework using directional
derivatives to segment overlapping cervical cells by incorporating a
star-shape-prior within a level set method.

This paper proposes a framework for individual segmentation
of overlapping cytoplasms in cervical cells images. The proposed
framework, which is also capable of detecting the corresponding
nuclei, first employs a supervised classifier to separate cell clumps
from the background. It then employs a patch-based approach where
parametric active contours detect, on a patch-by-path basis, the cyto-
plasm boundary of each overlapping cell in a cell clump. The active
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Fig. 1. Overview of the proposed framework. The background
extraction stage aims at separating all cell clumps from the back-
ground, and identifying the maximum region of each individual cy-
toplasm within each cell clump. The cytoplasm segmentation stage
aims at segmenting the cytoplasm of each cell within each clump.

contour within each patch deforms under the external influence of
Gradient Vector Flow (GVF) forces computed based on the local
edges depicted in each patch region. The framework is evaluated on
real Extended Depth Field (EDF) images, and compared against the
state-of-the-art methods in [19, 2]. Results show that the proposed
framework leads to more accurate cytoplasm segmentation results
compared to the current state-of-art methods.

The rest of the paper is organized as follows. Our proposed
framework is detailed in Section 2. Experimental results are pre-
sented in Section 3. Finally, Section 4 concludes this paper.

2. PROPOSED FRAMEWORK

For each EDF image, which are obtained as detailed in [20], our
framework performs the segmentation of overlapping cervical cells
in two main steps. The first step consists of the segmentation of
clumps, detection of all nuclei in each clump using the Maximally
Stable Extremal Regions (MSER) algorithm [21], and identification
of the maximum region of each cell within each clump. The second
step focuses on cytoplasm segmentation for each cell within each
clump. A diagram of the proposed framework illustrating the con-
stituent stages is shown in Fig. 1. We explain each stage next.

Background extraction. This stage aims at dividing the EDF
image into cell and background regions. Cell regions correspond
to the regions containing overlapping cervical cells, the so-called
cell clumps, while background regions correspond to the remaining
empty area. This stage reduces the search space for the subsequent
stages by concentrating on cell clumps. Cell clumps, which may
include overlapping cells or isolated cells, are detected as follows.
The quick shift algorithm [22] is first applied to find local maxima of
a density function that takes into account pixel value similarities and
spatial proximity between pixels and the centroids of clusters. The
outcome of this process is a map of super-pixels,QS , in which super-
pixels are labelled with values in the range [0, 1], as exemplified in
Fig. 2(b). A naive Bayes classifier is then run on map QS with
two classes, cell clumps and background. This classifier results in a
binary image that is used as a mask, denoted by B, that indicates the
position of clumps [see Fig. 2 (c)].

Detection of nuclei in each clump. Nuclei are usually char-
acterized by relatively low gray values, homogeneous textures, and
well-defined (almost circular) boundaries. Based on the assumption
that nuclei do not overlap and that each nucleus represents one cell,
the MSER algorithm is used to detect stably connected components.
These components are characterized by blobs that represent the can-
didate nuclei. Some of these candidates are filtered out if their sizes

(a) (b) (c)

Fig. 2. (a) Example of an extended depth field (EDF) cervical cy-
tology image. (b) Corresponding over-segmented super-pixel map
generated by quick shift (QS). (c) Corresponding binary image rep-
resenting cell clumps produces by a Bayes classifier.

are not within specific threshold range. In our experiments, the size
of the blob should be within the range∈ [200, 600] pixels, as the ma-
jority of nuclei in cervical cell images have a size within this range.

Cell Segmentation. Based on our observations, cytoplasm
boundaries are usually located at the same radial distance from the
centroid of their associated nucleus. To segment a cell, the maxi-
mum possible region of each cytoplasm in the clump is first found
based on the orientation of the corresponding nucleus. This is based
on the observation that the orientation of the nucleus is a good esti-
mator of the orientation of its cytoplasm. Therefore, the geometry of
each detected nucleus is used to define an ellipse that represents the
maximum region of the corresponding cytoplasm. Specifically, this
maximum region is defined as an ellipse with the same orientation
as the ellipse bounding the nucleus, but with a major axis equal to
the distance between the current nucleus and the closest neighboring
nucleus. The minor axis of this ellipse is then adjusted to ensure that
the orientation of the ellipse matches the orientation of the nucleus.
We denote this ellipse by Eellipse. The maximum region of each
cell is then given by:

CM = OB ∧B (1)

where OB = QL ∩ Eellipse, and QL is the label map produced by
quick shift. An exampleQL is shown in Fig. 3 (a), where each super-
pixel is shown using a different color. The black contour in Fig. 3 (a)
represents the outer border of all regions inQL that overlapEellipse,
i.e., the outer border of OB. Eellipse is shown as a white contour
in the figure. The outer contour of OB is used to define CM by
using information from binary mask B. This is depicted Fig. 3 (b)
as a red contour. Points L0 and L1 in Fig. 3 (c) represent possible
positions for patch initialization. The path-based deformation is run
to detect the section of the cytoplasm boundary that overlaps other
cells, which is denoted by Celloverlap. This is depicted in red in
Fig. 3 (c). Note that the section of the cytoplasm boundary that
does not overlap other cells, depicted in blue in Fig. 3 (c), is easily
identified by computing the outer boundary of the cell clump and the
maximum region of each individual cell. We denote this section by
CellnoOverlap.

Patch-based deformation. Let P0 be an initial square patch of
size τ × τ pixels and centred at L0 (or L1). This is illustrated in Fig.
4. Inside this initial patch, an open curveCP0(s) = [x(s), y(s)], s ∈
[0, 1] is initialized, which represents a parametric active contour.
Curve CP0(s) is perpendicular to the line connecting the centroid
of the nucleus, denoted by c, and the centroid of the patch m, de-
noted by cm [see Fig. 4(b)]. For each cell, Celloverlap is computed
as follows:

Celloverlap = Epatch(CP0) ∪ Epatch(CP1) ∪ Epatch(CP2)∪
. . . ∪ Epatch(CPM )

(2)
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Fig. 3. (a) Example of a labelled map generated by quick shift (QL);
the white contour denotes an exampleEellipse, and the black contour
denotes the outer border of all regions that overlap Eellipse. (b) The
green contour denotes the clump border and the red contour denotes
the maximum region of the cell. (c) The yellow stars denote L0 and
L1, the possible positions for patch initialization

where M represents the total number of required patches to seg-
ment Celloverlap, and Epatch(CPm) is an energy function to be
minimized for curve CPm(s) in patch m. Patch Pm+1 is defined
as patch Pm; however, Pm+1 is initialized based on the results of
the deformable open curve from patch Pm, where the last element
from the curve in patch Pm is the centroid of patch m + 1; i.e.,
cm+1. In order to perform the operation in Eq. (2), the result of
deforming the open curve in each patch is taken as the section of the
curve within the region of patch that does not overlap the adjacent
patch. The final cytoplasm boundary is just the union of Celloverlap
withCellnoOverlap. It is important to mention that the reason for the
initial open curve within patch Pm to be defined as being perpendic-
ular to the line connecting c and cm is to provide circular motion of
patches around the nucleus.

A 
c

c0

(a) (b)
Fig. 4. (a) Example synthetic overlapping cells; the red contour de-
notes CellnoOverlap, the yellow rectangle denotes patch P0, and the
black rectangles denote the subsequent patches. (b) A close-up view
of patch P0; the orange dotted line denotes the initial open curve,
which is perpendicular to the light blue line connecting c and c0;
the green contour denotes the result of the deformable curve for this
patch.

The open curve that is initialized in patch Pm evolves to the ob-
ject’s boundary within the patch by minimizing the following energy
function:

Epatch(CPm) =
1

2

1∫
0

(α
∣∣C′Pm

(s)
∣∣2 + β

∣∣C′′Pm
(s)
∣∣2)ds

+

1∫
0

Eext(CPm(s))ds (3)

where α and β are weighting parameters that control the curve’s
tension and rigidity, respectively. The first integrand in Eq. (3) is
referred to as the internal energy, which controls the smoothness of
CPm , while the second integrand is referred to as the external en-
ergy [i.e., Eext(CPm(s))], which attracts CPm towards the object’s

 

L0

L1

θL

Fig. 5. Example of synthetic overlapping cells; the red contour is the
section of the cytoplasm boundary detected by the proposed patch-
based deformation; the yellow rectangle denotes patch P0, the black
rectangles denote the subsequent patches and the green rectangle de-
notes the last patch. i.e., patch PM .

boundary; in this case, to the section of the cytoplasm’s boundary
depicted within the patch.

The external energy consists of GVF forces [9], which employ
an edge map computed using a Canny edge detector. GVF forces
are computed for each patch and thus, change according to the edges
depicted within the patch. Performing the deformation on a patch-
by-path basis provides two main advantages. First, the overall com-
putational cost is reduced as the deformation is performed only on
the patches, not the whole image. Second, computing the GVF on
each patch provides more precise local edge features than those ob-
tained by computing the GVF over the whole image, where small
edge features may be neglected.

The minimization ofEpatch(CPm) can be achieved by evolving
the curve dynamically as a function of parameter s and artificial time
t as follows:

CPm(s, t) =
[
αC

′′
(s, t)− βC

′′′′
(s, t)

]
−∇Eext (4)

where the first term and the second term are called the internal force
and the external force, respectively, and ∇ denotes the gradient op-
erator performed on GVF forces. It is important to mention that
detecting the maximum region of a cell helps limiting the final cy-
toplasm boundary to this maximum region, as patches are always
initialized within this maximum region.

Termination of patch-based deformation. The patch-based
deformation is terminated if the angle between the line connecting
c and cm and the line connecting c and L1 (i.e., the other end of
CellnoOverlap) is less than θL. This is illustrated in Fig. 5. To re-
fine the final contour that represents the cell cytoplasm, a live-wire
algorithm [23] is applied between points cM and L1.

3. PERFORMANCE EVALUATION

In this paper we used a subset of five real EDF images, as tested in
[2]. Each image in this dataset has up to 15 clumps and each clump
contains a varying number of cells with an overlap coefficient in the
range ∈ [0.0, 0.9], 0.0 indicates no overlap while 0.9 indicates 90%
overlapping. The images in the dataset are in gray level values.

For all experiments, a value of α = 0 and β = 10 is used to
control the smoothness of the curves in each patch. These curves are
allowed to deform for 10 iterations. A value of µ = 0.2 is used for
the regularization parameter to compute the GVF field, as suggested
in [9]. The size of the patch is set to τ = 10. The termination of the
patch-based deformation is based on a value of θL = 20◦.

The performance of the proposed framework is compared with
state-of-the-art methods available from the literature. To the best of
our knowledge, the methods presented in [2, 19] provide the best per-
formance in the field of segmentation of overlapping cervical cells.
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(a) (b) (c)

(e) (f) (g)

Fig. 6. Visual results of evaluated methods. The contours depicted
in different colors show the detected cytoplasm boundaries.

The parameters of Nosrati et al.’s and Lu et al.’s methods are set to
the values suggested in [2, 19].

The detection and segmentation accuracy on the tested EDF im-
ages is measured by the average Dice similarity coefficient (DSC)
[24] over the good segmentations, using the provided ground truth.
Here, we consider DSC values above 0.7 as good segmentation re-
sults [25]. Evaluations are performed on a total of 200 cells, which
have an overlap coefficient in the range [0, 0.5]. Table 1 tabulates
results of the evaluated methods and our framework. This table also
tabulates the pixel-based evaluation using the true-positive (TP) rates
and false-negative (FN) rates.

Table 1. Evaluation results for cytoplasm segmentation. Highlighted
values represent the best results; values in parentheses represent the
standard deviation. TP: true positive rates. FP: false positives rates.

Method Dice (Pixel) TP (Pixel) FP (Pixel)
[19] 0.8600(0.0776) 0.8642(0.1023) 0.0011(0.0012)
[2] 0.8700(0.0900) 0.9000(0.1000) 0.0019(0.0016)

Proposed 0.9140(0.0632) 0.9239(0.0711) 0.0008(0.0009)

Visual results for Lu et al.’s method, Nosrati et al.’s method, and
the proposed framework are shown in Fig. 6. Visual results of Lu
et al.’s method show more detected cells in comparison to the other
evaluated methods. This is mainly due to the good nucleus detec-
tion algorithm, which allows more cells to be correctly detected.
However, this method fails to segment cells with a high degree of
overlap. The method proposed by Nosrati et al. has advantages in
the overlapping regions, regardless of the degree of overlap among
cells. However, in terms of accuracy, this method is less precise in
distinguishing the cells from the background because of the inaccu-
rate random decision forest probability map used [2]. The results of
the proposed framework confirm the quantitative results presented in
Table 1 .

In some cases where the cell has an oval shape rather than a cir-
cular shape, the method proposed by Lu et al. fails to accurately
segment the cell. For instance, in clumps where there are two oval
cells [see Fig. 7 (a)], Lu et al.’s method enforces the contour to
be minimized in the overlapping area between the two cells. This
is because the cytoplasm segmentation is underpinned by the ini-
tial contour, which is extrapolated using the boundaries of the cell
clumps and the detected nuclei. If the contour is initialized in a re-
gion where two cytoplasms overlap, then it is likely to be minimized

Lu et al. Nosrati et al. Proposed Framework

(a)DSC=0.8239 (b)DSC=0.9148 (c)DSC=0.9524

(d)DSC=0.6828 (e)DSC=0.8082 (f)DSC=0.8769

Fig. 7. Two examples of EDF cervical cytology image. Each row
represents a case. The green contour denotes the ground truth, while
the red contour denotes the results obtained by the corresponding
method.

in the area between the two nuclei. The method proposed by Nosrati
et al. provides more accurate results for this case [see Fig. 7 (b)]
than those attained by Lu et al.’s method. This is manly due to the
elliptical-shape prior employed. Our proposed framework attains the
most accurate result for this case [see Fig. 7 (c)]. This is mainly due
to three important advantages of our the patch-based deformation.
First, patch P0 is always initialized at one end of Celloverlap [see
points L0 and L1 in Fig. 3 (c)] . Second, the subsequent patches are
initialized always in regions that represent the maximum region of
the cell; this increases the likelihood of segmenting the whole cell.
Third, the circular motion of the patches helps to detect a boundary
that represents a more realistic cell shape.

The method proposed by Lu et al. also fails in cases where the
cell nucleus is not exactly centred in the cell. This is mainly due to
shape prior proposed by their method. Based on their observations
that the majority of cytoplasm contours are located on pixels at the
same relative distance from their associated nuclei, the shape prior
is defined based on the geometry of the detected nuclei and clumps.
This results in inaccurate segmentation results for the case depicted
in Fig. 7 (d). Nosrati et al.’s method attains more accurate results
than those attained by Lu et al.’s method in this case [see Fig. 7 (e)].
This is due again to the elliptical-shape prior employed. Because
our proposed framework does not rely on a particular shape prior to
deform the active contours, it provides more accurate results in this
case [see Fig. 7 (f)]. In other words, our framework can segment a
variety of cell shapes thanks to the patch-based deformation process.

4. CONCLUSION

This paper presented a framework that addresses the problem of seg-
menting the cytoplasm of each individual cell in EDF images de-
picting overlapping cervical cells. The proposed framework uses
a patch-based approach where a parametric active contour detects,
on a patch-by-patch basis, the cytoplasm boundary of each overlap-
ping cell. The active contour within each patch is deformed under
the external influence of GVF forces computed based on local edge
features collected from the patch region. Computing GVF forces
on a patch-by-patch basis not only reduces computational costs, but
also provides precise features, as computing these forces over the
whole image may overlook small edge features. Experimental re-
sults showed that the proposed framework outperforms other state-
of-the-art approaches, in terms of cytoplasm segmentation accuracy,
as measured by the Dice similarity coefficient.
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