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ABSTRACT

A resistive pulse sensing device is able to extract quantities such as
concentration and size distribution of particles, e.g. cells or micro-
spheres, as they flow through the device’s sensor region, i.e. channel,
in an electrolyte solution. The dynamic range of detectable parti-
cle sizes is limited by the channel dimensions. In addition, signal
interference from multiple particles transiting the channel simulta-
neously, i.e. coincidence event, further hinder the dynamic range.
Coincidence data is often considered unusable and is discarded, re-
ducing the throughput and introducing possible biases and errors into
the distributions. Here, we propose a two-step solution. We code the
channel such that the system response results in a Manchester en-
coded Barker-Code sequence, allowing us to take advantage of the
code’s pulse compression properties. We pose the parameter esti-
mation problem as a sparse inverse problem, which enables estima-
tion of particle sizes and velocities while resolving coincidences, and
solve it with a successive interference cancellation algorithm. We in-
troduce modifications to the algorithm to account for device fabrica-
tion variations and natural stochastic variations in flow. We demon-
strate the ability to resolve coincidences and possible increases in
the device’s dynamic range by screening particles of different size
through a Barker encoded device.

Index Terms— Coincidence Correction, Barker Codes, Inverse
Problems, Successive Interference Cancellation, Coulter counter

1. INTRODUCTION

The resistive-pulse technique [1][2] (i.e. the Coulter-counter tech-
nique [3]) is widely employed in many fields, including for example,
cell biology [4], clinical medicine [5], pathogen detection [6], and
the food industry [7], to measure the concentration and size distribu-
tion of particles, e.g. cells or microspheres, in solution. The tradi-
tional Coulter counter [8] consists of a solution of particles flowing
through an channel while a voltage potential is applied across and
the current through the channel is monitored. The current response,
or impedance response via Ohm’s law, is perturbed by particles as
they transit the channel, temporarily increasing the impedance of the
channel.

Coulter counters are limited by dynamic range [9] of the size
particle they can detect. The resulting impedance impulse amplitude
of a particle is proportional to the particle’s volume divided by the
channel’s volume. Hence, particles with smaller radii will exhibit
significantly smaller signal amplitudes that quickly drop below the
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noise floor, thus avoiding detection. This problem is exacerbated
in coincidence situations where more than one particle passes the
channel at the same time. In this case, the impedance signals will
be superimposed, thus small particles’ signals will be dominated by
larger particles’ signals. In general, coincidences could lead to am-
biguities in the size and velocity of particles, therefore such data is
often discarded, introducing errors into the measurement of particle
concentration and particle size distribution [10][11]. These coinci-
dence events could be avoided by decreasing the concentration of
particles in solution, at the cost of reducing the throughput of the
system. Different techniques aim to correct these coincidence er-
rors with more complex electrode sensor array systems [12][13] or
complex statistical analysis [10].
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Fig. 1. Manchester Barker Code Device and Matched Filter Re-
sponse: (a) Polydimethylsiloxane channel encoded with MB code
bonded to glass substrate with four-probe sensor, (b) NPS channel
and resultant impedance signal of single transiting particle, (c) tradi-
tional Barker seven code and matched filter response, (d) manchester
encoded Barker seven code and matched filter response.

In previous work by Balakrishnan et al. [9], it was demonstrated
that the system response can be modulated by fabricating channels
with wider (nodes) and narrower (pores) regions in a controlled man-
ner (Fig. 1a). Hence, these devices are referred to as node-pore sens-
ing (NPS) channels. Since the node’s cross sectional area is much
larger than the particle, as particles transit from the narrow pore sec-
tion to the wide node section, the impedance response will nearly re-
turn to baseline (Fig. 1b), thus enabling pulse amplitude signal mod-
ulation. In Rivest et al. [14], we demonstrated that it is possible to
fabricate long coded NPS channels to output modified Barker-code
[15] sequences, such that the optimal pulse compression properties
of Barker codes (Fig. 1c) will help resolve coincidence events in a
similar way as they are used to separate targets in high-resolution
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radar. Due to the one-sided nature of our impedance signal, we
adapted the Barker code by encoding its bit-values in signal tran-
sitions, i.e. 0 as 01, 1 as 10, Manchester encoding [16]. Impedance
transitions from high-to-low are coded by transition from narrow
pores to wider nodes and vice versa. The combined Manchester-
Barker (MB) code is shown in Fig. 1d.

It is worth noting that a recently published related work using
coded microfluidic devices has been conducted by Liu et al. [17]
to resolve coincidence events when sensing the multiplexed signals
from an array of microfluidic channels. Their signals were differ-
entially encoded with a set of complementary Gold codes, imple-
mented via a complex co-planar electrode array. In contrast to their
work, which enables separation of particles crossing different chan-
nel at the same time, our work enables optimal separation of particles
crossing a single channel.

Here, we propose a special deconvolution as an inverse problem
to resolve coincidences and a modified successive interference can-
cellation [18] (SIC) algorithm solve the inverse problem. Previous
work [14][17] has explored SIC methods for resolving coincidences,
but did not consider significant issues and undesirable artifacts, such
as baseline drift, manufacturing imperfections, dynamic range of
valid detections, and low-resolution parameter estimation, that result
in numerous miss-detection or false alarms and biased particle size
estimates. We discuss and incorporate a forward model calibration
step, an adaptive threshold detection scheme, and a robust regression
fit to mitigate these sources of error.

2. MATERIAL AND METHODS

2.1. System Modeling

The impedance measurements (yt) for particles passing through the
channel can be well approximated as a particle transit-time depen-
dent convolution of the system response (hτ ) with a series of scaled
impulse functions (xt). Each impulse represents the crossing time
and signal amplitude of a single particle. In addition, a time varying
affine term is added to account for slow moving baseline drift (bt).
We finally include an additive gaussian noise term (nt), which we
assume here to be white for simplicity.

yt = hτ ∗ xt + bt + nt (1)

This problem can be formulated in matrix form as

y = Ax+ b+ n, (2)

where the columns of A consist of unit-amplitude shifted and scaled
dictionary of channel responses, and x a sparse vector in which each
non-zero element represents the signal amplitudes of an individual
particle, and its indices representing the particle’s arrival-time and
transit-time. This concept is illustrated in Fig. 2b.

2.2. Inverse Problem Formulation

The problem of measuring particles’ signal amplitude, arrival and
transit times can be viewed as a deconvolution. We pose the decon-
volution as the following sparsity constrained inverse problem

minimizex,b ||Ax+ b− y||2 + λ||Db||2 (3)
s.t. cardinality{x ∈ range(t, τ)} < k

in which the number of particles transiting the channel, k, in a fixed
period of time is constrained by the concentration of particles in the
solution, represented by k. We aim to solve for appropriate sparse
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Fig. 2. Coincidence Event and Forward Model Construction: (a)
a long channel and the resultant impedance signal of a coincidence
event, (b) decomposition of a signal resulting from part a into equa-
tion 2: a forward model, A, a sparse vector, x, a baseline, b, and
a noise term, n. The forward model is a dictionary of channel re-
sponse signals parameterized by arrival-time and transit-time. x is a
sparse vector representing individual particle’s amplitudes at indices
representing the arrival-time and transit-time of these particles.

entries in x corresponding to arrival and transit times. We also si-
multaneously solve for the baseline, b, which is constrained to be
smooth using `2 regularization of its second order difference func-
tion, represented by the D operator.

2.3. Implementation using Successive Interference Cancellation

To simplify the process, and reduce complexity, we break the in-
put signal into overlapping blocks. Each block is processed sepa-
rately, and the results are consolidated at the end. For each block,
we attempt to solve the sparse deconvolution using a greedy SIC
algorithm, similar to orthogonal matching pursuit [19]. Figure 3 il-
lustrates our method. It is outlined by iterating a sequence of corre-
lations with a matched filter-bank (i.e., the dictionary), detection, fit,
and cancellation steps. Over the iterations we construct a list of the
strongest detections, referred to as the list of true detections. Each
iteration we jointly fit all the true detection models to the data to es-
timate the particle sizes as well as the smooth baseline. We grow
the list by adding the strongest unique detection each iteration. By
cancelling/peeling the strongest signal in each iteration, we allow for
impedance response of smaller particles to be detected in successive
rounds. Figure 4 illustrates a single iteration of our method.
2.4. Basic Methodology

In this section we first describe a basic approach for implementing
the SIC algorithm. Later we address necessary improvements for
dealing with practical device and particle issues. Figure 4 demon-
strates a single iteration of the algorithm on a block of data. First,
we apply the conjugate, i.e. A∗, matrix to the data. This operation is
equivalent to filtering with a matched filter bank of scaled MB codes.
The filter bank is comprised of normalized filters each with a unique
transit-time parameter such that the continuous space is linearly dis-
cretized over a range of plausible particle transit times. Figure 4a
shows a typical MB-11 response and Fig. 4b shows the filter-bank
response, in which the dominating peak position indicates a detected
particle.

An adaptive threshold detection scheme [20] is performed on
the matched filter-bank response to localize a particle’s arrival and
transit time parameters. The large dynamic range of particle sizes
could yield different levels of ‘true-peaks’ corresponding to actual
particles, and ‘false-peaks’ corresponding to side-lobes. Therefore

1054



Start

No

No

Yes

Yes

Finish

Interference Cancellation

Model Regression

Adaptive Threshold

Detection Scheme

Filter Bank Correlation

Unique Detection?

Iteration?

Fig. 3. Successive Interference Cancellation Flow Chart: An
overview of our SIC algorithm blocks, transitions (solid arrows), and
decisions (dashed arrows)

an adaptive scheme is necessary to mange false alarms and mis-
detections. Each correlation value is evaluated against a threshold
derived from an estimate of the surrounding signal energy. The
adaptive scheme will select a threshold that is appropriate to detect
a wide dynamic range of particle sizes, and is based on a constant
false alarm-rate criteria [21].

The adaptive thresholding chooses a list of possible candidates,
from which a single unique detection, corresponding to the greatest
correlation value is selected for each iteration. The transit-time es-
timate for the detection is chosen to be that of the best correlating
matched filter. To determine the amplitude, a least square regression
is performed to fit the signal of the detected peaks (from current and
previous iterations) and baseline to the data. Figure 4c shows an ex-
ample of a resulting fit. More formally, we define Ãi, to be a subset
of columns of A corresponding to signal responses of already de-
tected particles by the ith iteration, and x̃i to be the unknown signal
amplitudes of the subset of detected peaks by the ith iteration. In
that case, the entire least-squares fit at the ith iteration is formulated
as,

min
x̃i,b
‖Ãix̃i + b− y‖2 + λ‖Db‖2, (4)

where λ controls the smoothness of the baseline. Finally, the time
signals of the detected particles are computed and subtracted from
the acquired signal by computing r = y− Ãx̃. This residual is used
as an input to the next iteration for the purpose of possibly detecting
other particles. The residual is illustrated in Fig. 4d.

This process is repeated until either of the stopping conditions,
i.e., no more detections in the block or the process reaches the
kth iteration of SIC. The second stopping criteria enforces the spar-
sity constraint from equation 3. In post-processing particle sizes are
computed as a function of channel dimensions and pulse height via
the method outlined in DeBlois et al. [22].

2.5. Sources of Forward Model Error

Figures 4d and 5 show that the calculated residual has spikes, which
correspond to model mismatches at the signal transitions. Model
mismatches can be attributed to (a) the manufacturing of the devices,
(b) stochastic variations in the flow of particles through the device,
and (c) the discretization of the continuous transit-time parameter
space. These residual outliers will cause biases in particles’ arrival
and transit times as well as the particles’ size estimates.
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Fig. 4. Single SIC Iteration: (a) Manchester Barker 11 coded sys-
tem response of single particle, (b) matched filter-bank response of
raw data with single detection (red circle), (c) detected model fitted
(red dashed) to raw data (blue solid), (d) residual between the raw
data and the fitted model exhibits spike signals at points of signal
transitions due to modeling errors.

Standard soft-lithography manufacturing imperfections result in
deviations from the specified channel dimensions, leading to devi-
ations from the expected forward model. From a communications
point-of-view, these imperfections cause deviations from a uniform
number of samples per symbol. Visually, the pulses of the data and
the ideal model are not aligned and the residual signal after cancella-
tion has sparse spiky errors at the edges. In addition, stochastic vari-
ations in the flow of the particles through the device can also cause
similar deviations. Both of these bias the least-square estimate of the
pulse heights. The transformation of the forward model to matrix
form requires the discretization of the continuous transit-time pa-
rameter space. A high resolution transit-time parameter space would
be required to properly approximate the signal. Fine discretization
requires a larger filter bank, increasing computation. Coarse dis-
cretization causes the data to mismatch with the model and results in
similar outlier residuals.

2.6. Model Error Reduction and Robust Regression

To mitigate the device imperfections we use a calibration step in
which the signal transition times are calibrated from the data, and are
used to correct the ideal MB-code model. Specifically, the calibra-
tion is achieved by performing a first pass using the ideal MB-code
model. Then, tabulating a list of impedance responses from high
SNR detection. For each detection we calculate a normalized sam-
ples per symbol rate, and then select the median number of samples
for each symbol as the true geometry. A new filter bank is regener-
ated from the calibration.

To reduce computation we use a coarse forward model. To re-
gain accuracy in arrival and transit time resolution we interpolate the
filter-bank response around the detected peak by linearly weighting
local transit-time parameters by their respective correlation energies.
The recalculated parameters are then used to generate Ãi, used in the
aforementioned least-squares fit step.
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Even with these steps, we still observe outlier residuals, which
are likely due to the stochastic variations in the flow of particles
through the device. To reduce the bias of our particles’ size estimate
we interchange the least-square regression with a robust regression
[23]. We solve the robust regression as an iterative reweighted least
square (RLS) [24] problem, where the W term is used to reweight
the data consistency term to make equation 4 equivalent to the `1-
norm minimization (Eqn. 5), which is well known to be robust to
outliers. The weights are updated each jth sub-iteration according
to equation 6. More specifically we solve

minimizex̃,b ‖W (Ãx̃+ b− y)‖2 + λ‖Db‖2 (5)

where, W(j,j) =
1

|Ã(j)x̃+ b(j) − y(j)|
(6)

2.7. Experimental Setup

We screened a 1 : 1 : 1 ratio of 5µm, 10µm, and 15µm diameter
polystyrene microspheres in phosphate-buffered saline at a concen-
tration of 5x105 particles/mL. We fabricated our microfluidic NPS
channels using standard soft-lithographic techniques, as described in
Balakrishnan et al. [9]. We applied 1-volt DC across the device and
sampled the current through the device at 50 kHz.

3. RESULTS
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Fig. 5. Microsphere Results: A scatter plot of results from colloid
experiments. Plot of estimated transit time (seconds) versus esti-
mated diameter (µm) of colloid. Three ovals overlaid to highlight
the three detected colloid sizes.

As visualized in Fig. 5, the three clusters correspond to the three
sizes of microspheres in solution. The 5µm diameter microsphere,
previously undetectable, cluster contains fewer detections than the
10 µm and 15µm microsphere clusters. We attribute this to their
inherently lower SNR (estimated SNR of 5 µm detection as low as
1.7707 dB) and reduced signal to interference ratio in coincidence
settings due to forward model error. The 5µm and 10µm diameter
microsphere clusters have greater variance in the transit time dimen-
sion than that of the 15µm diameter microsphere cluster. We at-
tribute this to the flow rate spatially varying across a cross-section of
the channel, referred to as parabolic flow. Particles relatively small
compared to the cross-sectional area of the channel (5 µm diameter
microspheres) can experience a wider variety of velocities near the
channel edges, spreading their distribution. There are several detec-
tions between clusters. These could result from either particles that
existed in the solution or from particles that clumped together.

Figure 6 shows a coincidence event where the signals of three
particles overlap. It shows the SIC for three consecutive iterations,
in which the interference of detected signals is sequentially peeled,
enabling accurate recovery of the particles’ parameters. Figures 6b-
6d illustrate the presence of the previously discussed outlier residual
signals, but in these instance they do not affect the detection of par-
ticles in later iterations, nor bias the estimate of the amplitudes.
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Fig. 6. Coincidence Correction: (a) Fitted model (red dashed) of first
iteration of our proposed method overlaid on raw data (blue solid),
(b) fitted model (red dashed) of second iteration overlaid on residual
(blue solid) from first iteration, (c) fitted model (red dashed) of third
iteration overlaid on residual (blue solid) from second iteration, (d)
final residual (blue) from third iteration.

4. DISCUSSION

The MB encoding of the channel allows smaller particles to be de-
tected, increasing the dynamic range of the device. Devices outfitted
with either/both longer channels or more complex codes could make
it possible to further improve the dynamic range of the device. As the
length and complexity of the device increases, we would expect to
observe an increased number of coincident events and more channel
imperfections, respectively, further motivating our advanced modifi-
cations to the general method.

Additional factors not accounted for in the forward model in-
clude violations to the assumption of constant flow rate. A violation
of this assumption would result in a system response that also de-
pends on the derivative flow rate. To account for this would increase
the dimension of our forward model to intractable size and thus is
not considered. On rare occasion, larger deviations from the forward
model cause a degradation in our ability to detect particles’ presence,
a mis-detection. Equally infrequently, we detect a particle that is not
well represented in the forward model, resulting in unusual outlier
residuals and possible false alarms in successive iterations.

5. CONCLUSIONS

We have demonstrated that by encoding a long microfluidic chan-
nel with a Barker-code arrangement of nodes and pores, we have
the ability to increase the dynamic range of the device. Our special
deconvolution algorithm is able to exploit this expected code struc-
ture in the system response to resolve coincidence events, a conse-
quence of our long channel and high concentration of particles in
solution. With the calibration step and robust regression we are able
to mitigate the effects of channel imperfections and outlier residual
signals. This has all been achieved while preserving the relatively
simple configuration of the resistive pulse sensor.
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