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ABSTRACT

Two-photon (TP) calcium imaging is an important imaging modality
in neuroscience, allowing for large-scale recording of neural activ-
ity in awake, behaving animals at behavior-relevant timescales. In-
terpretation of TP data requires the accurate extraction of temporal
neural activity traces, which can be accomplished via manual or au-
tomated methods. In this work we seek to improve the accuracy of
both manual and automated TP microscopy demixing methods by
introducing a denoising algorithm based on a statistical model of TP
data which includes spatial contiguity, sparse activity and Poisson
observations. Our method leverages recent developments in stochas-
tic filtering of structured signals based on Laplacian-scale mixture
models (LSMs) to model the neural activity in TP data as a set of
spatially correlated sparse variables. We apply our method on TP
images taken from the visual cortex of an awake, behaving mouse,
and demonstrate improved neural activity demixing over current pre-
processing techniques.

Index Terms— Two-photon microscopy, Stochastic filtering,
Reweighted ¢

1. INTRODUCTION

Simultaneous recordings of neural populations at behavior-relevant
time-scales are vital for studying the functionality and activity
of neural systems. Two-photon (TP) microscopy offers the abil-
ity to record the activity of hundreds of neurons over relatively
large field-of-views (FOVs) at neurally relevant time scales (e.g.
500 pm x 500 pum areas at 30 Hz frame-rates). TP microscopy
accomplishes this task by raster-scanning a thin slice of tissue in
which fluorescent proteins, which interact with calcium ions [1],
have been introduced (virally or through transgenic animals [2]).
When a cell fires, the increased calcium levels in the cell activates
the proteins and the response to illumination is increased over the
spatial region occupied by the cell (the cell’s spatial profile). The
resulting TP movie encodes temporal activity-related calcium traces
over the entire FOV. To fully utilize TP data, the neural activity time-
traces of all the cells in the FOV need to be extracted as accurately
as possible, a process that can be complicated in a number of ways.
First, the spatial profiles for neurons may overlap. Second, the illu-
mination in TP microscopes can result in complex noise statistics.
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Finally the rise in intensity of the cell is spread over both space and
time, resulting in a lower per-pixel signal-to-noise ratio (SNR).

A number of algorithms currently exist to extract the neural ac-
tivity traces from TP movies. These methods include both tempo-
ral deconvolution methods that rely on hand-selected spatial pro-
files for each neuron in the FOV [3-7] or fully automated methods
that factor the entire video sequence into spatial profiles and time
traces [8—11]. While these algorithms have been broadly utilized,
often pre-processing in the form of spatial or temporal averaging or
down-sampling is used to raise the SNR for efficient demixing (man-
ual or automated). Furthermore, newer TP techniques spread the
illumination energy to capture entire neural volumes at the cost of
reduced SNR [12]. To make the best use of such data and extract the
most of the underlying neural signals, known structure in the signal
statistics needs to be leveraged. Specifically, the spatial contiguity of
neural profiles in the FOV, the spiking nature of neural time traces,
and known statistics of the measurement process should all be used
to extract the signal-specific fluctuations from TP movies.

One recent model that has the capability of incorporating all of
these required statistics is the reweighted ¢, spatial filtering (RWLI1-
SF) model. This model uses a Laplacian-scale mixture(LSM) to
model the temporal fluorescence variable as a set of sparse and spa-
tially interdependent variables. While this model was originally de-
scribed for observations contaminated by Gaussian noise, we mod-
ify the RWL1-SF to accommodate Poisson observations, which can
better approximate TP data in low-light regimes. We demonstrate
in this work that the resulting modified RWL1-SF algorithm can ex-
tract signal-relevant activity from TP data in order to improve both
manual and automated demixing.

2. BACKGROUND

2.1. Demixing Calcium Imaging

Standard methods of TP data analysis (e.g. [8,9]) model the observed
fluorescence movie Y as a linear mixture of the individual neural
profiles (the spatial region in the image where a given neuron’s ac-
tivity is observed) and temporal activities of the cells as a function
of time,

Y(t) =) Xpse(t) + B(t) + e, 1)

k
where X, are the neural spatial profiles, sx(t) are the correspond-
ing temporal activity traces, B(t) is the potentially time-varying

background, and € is often modeled as white-Gaussian measurement
noise. The time traces s for each neuron are particularly important
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Fig. 1. Graphical model of the LSM for TP microscopy denoising. Left: Bayesian graphical model depicting latent activity parameters
si,;(t) that generate the observed fluorescence variables y;,;(¢). Note that the model contains a Markov-filed like dependency structure
(i.e. neighboring variables are dependent on each other). The weights w; ;(¢) shown above the graphical model depict the strength of the
correlation as a function of distance. Right: An equivalent hierarchical model that decouples the activity parameters by introducing a set of
hyper-parameters \; ;(¢). This hierarchical model can be used in an EM algorithm to perform inference over the activity parameters.

as they encode the activity-related calcium levels of the cell, a quan-
tity closely related to the spiking activity of the cell. The time traces
are often modeled as a convolution of the calcium concentration of
the cell ¢ with the impulse response of the fluorescing protein (i.e.
the binding/unbinding dynamics) h,

sk(t) = (h x c)(t). @

The per-pixel time traces s; ; can then be described as a linear com-
bination of the per-neuron time traces sg

80,3 () = Y X gsn(t), ()
k

where X} ; ; is the 4.5 pixel of the k" spatial profile.

To extract the time traces c(t) of each neuron, a number of meth-
ods have been developed. These methods predominantly fall into
two categories: methods that infer detailed information about the
spiking times of a cell given a manual specification of the spatial
profiles X [3—7] and methods that perform full demixing, uncover-
ing both X and s simultaneously [8-11].

The methods that focus on temporal deconvolution rely on man-
ually identified spatial profile to decide which pixels to average to
obtain a higher-SNR time trace of that cell’s activity. The result-
ing time traces are then deconvolved with an estimate of the pro-
tein impulse function h to obtain an estimate of the calcium trace
c. Many of these methods also take an additional step to infer spike
times from the activity-dependent calcium trace. Methods along thse
lines, for example, leverage Bayesian models [13] or Viterbi estima-
tion under a biophysical model [5].

The methods that focus on full demixing take a more fully au-
tomated approach and infer the spatial profiles alongside the tempo-
ral activity. The most commonly used of these demixing methods,
PCA/ICA [8], takes a two step approach to this problem. First, PCA
is used to reduce the dimensionality of the data (essentially looking
for the number of active profiles), and then uses ICA to allow non-
orthogonal profiles and correlated time traces. More recent tech-
niques take a similar dimensionality-reduction matrix factorization
approach, using non-negative matrix factorization (NMF) [9], NMF

incorporating additional sparsity and locality statistics [10], and dic-
tionary learning techniques [11].

Methods in both these categories are often not applied to raw flu-
orescence data, but rather to pre-processed data that has been subject
to spatial and/or temporal filtering. These steps are predominantly in
place to improve the SNR of the data. Instead of pre-processing the
data, we instead propose using a more detailed model which captures
some of the key features of neural cell recordings: spatially contigu-
ous firing, sparse temporal activity, and non-Gaussian observations.

2.2. Sparse Stochastic Filtering

Recent developments in sparse signal estimation have produced
models that can characterize complex high-dimensional statistics
using relatively simple inference algorithms. These stochastic filter-
ing methods aim to infer sparse latent variables using very general
local-consistency regularizers. Similar in spirit to the Gaussian
Process literature, these models, based on Laplacian-scale mixture
(LSM) [14, 15] impose spatial interdependencies via second-order
statistics. One particular instantiation of this model, reweighted ¢;
spatial filtering (RWL1-SF) [15] solves for coupled sparse signals
by alternating between solving a weighted LASSO optimization,
and updating the LASSO weights based on the spatially neighboring
signals. The update step allows neighboring signals to influence
each other, instilling the desired interdependencies between the sig-
nals. These methods have shown improved performance for both
dynamic filtering of sparse signals [16] and spatial hyperspectral im-
agery [15]. In this work we further extend this technique, adapting
the underlying probabilistic model to the specifics of TP microscopy.
Specifically, we introduce a Poisson measurement process to model
photon incidence and a constant background term that conveys the
static illumination level at a given location.

1039



Gaussian demixing

GCaMPéf response model

Time (s)

\
=) I\
< |
s 1) A,q}\1 f\ N
2\
T T T T 1 I | \\
60 70 80 90 100 110 120 |
Time (s) )\
Poison demixing \\
=) —
< 0 05 1
Time (s)

[T
< }l l L ﬂ L .)” A L Frame at 10s

60 70 8 0 100 1o 120

Time (s)
Time trace at (465,371)

=)
<
[T
< hMWWMMMMW

60 70 80 90 100 110 120

Fig. 2. Example comparison of Gaussian and Poisson deconvolution. Top Right: Model of the GCaMP6f protein impulse response h(t).
Bottom right: Single frame of TP microscopy from the mouse visual cortex. Left: Example demixing of a single pixel’s time trace (pixel
location circled in red in the bottom-right image) using Gaussian- and Poisson-based deconvolution. The overall activity patterns are similar,
however the Poisson deconvolution achieves a sparser solution, indicating a better match to the data.

3. STOCHASTIC FILTERING FOR TWO-PHOTON
IMAGING

Our method considers a spatio-temporal model of TP imaging based
on Poisson modeling of the fluorescence values and the LSM spatial
model used in RWLI1-SF over the underlying activity. Mathemati-
cally, we formulate a forward model (shown graphically in Figure 1)
of neuronal spike times influencing the activity at each pixel given
the observed fluorescence y;,; (t),

Yi,j (t) ~ POiSSOH((h * Siyj)(t) + bi,j)
si,;(t) ~ Laplace((w % N)4,; (%))
bij ~ Laplace((w % 7)), 4)

where h(t) is the protein activation impulse response, A; ; is the
underlying activity-based photon rate for each pixel and time step,
vi,; is the underlying photon rate for each background pixel at each
time step, and w;, ; (¢) and w; ; are the dependency-inducing kernels
indicating the how pixel activity is correlated across an image and
across time'. These kernels essentially control the spatial extent of
potential active regions. For example, if w; ;(t) spans a large spatial
region, it is more likely that only small areas of the image will be ac-
tive. This is because only a small number of hyper-parameters A will
be sufficient to suppress a large portion of the image. Consequently,
w;,; (t) should not span a larger area than the largest expected active
region (i.e. the radius of a neuron for TP data).

Nearby pixels will be encouraged to have similar activity histo-
ries (given the florescence data) via inter-linked Gamma hyper-priors
over the rate parameters A and 7,

Xij(t) ~ Gamma(a,6)

I'We note that by the positivity constrains on s and b, the Laplacian dis-
tributions here are actually Exponential distributions, however we keep the
general form to demonstrate that this model can be used in other datasets
which may not have positivity constraints

Vi~ Gamma(av 5)3 ©)
where o, @, 6; ;(t) and 0, ; are a-priori chosen parameters that con-
trol the moments of the Gamma distribution. To optimize this model
and recover the ‘clean’ underlying traces, we optimize

arg min — log (p(s,bly)) = —log (p(yls,b)p(s)p(b)). (6)

The marginal probability p(s) = {p(s|A\)p(A)dX and p(b) =
{ p(bl]v)p(~)d~ is analytically computable in this case (resulting in
a student-t style distribution [14]), however the resulting negative-
log probabilities are not convex and difficult to optimize over in high
dimensions. Instead, an expectation-maximization (EM) method
can be utilized as in [14, 15,17, 18] to iteratively calculate

{8,6) = argmin —log(p(yls,b)) — log(p(s|})) — log(p(bl))
X = B[\
7 = Eghl @)

Because the Gamma distribution is conjugate to the Laplacian dis-
tribution, we have closed form expressions for the expectation steps.
The full form of the expectation is quite complex, however it is well
approximated by the simple analytic expressions

2 §
Nslt) =
I = T Saomn Wi s+ B

~ 3
Yi,jg = — . ®)
! 1651 + 2 1,m) Wem[btm| + B

where 3 and ¢ are functions of « and 6, 3 is a fixed parameter de-
scribing the minimum variance of each A and ~, and the weights
wi,;(t) > 0 and w; ; > 0 describe the correlation structure across
the data cube (higher values of wj; ;(t) indicate higher correlations
at a distance of ¢, 7, t). Since the neighborhood is spatially motivated
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Fig. 3. Example frame of denoised data. Right: Original data frame
obscures some of the activity. Left: Denoised frame clearly shows
active cell bodies.

and identical at any shift, we can calculate the updates of A and ~
via 3D convolutions,

S - &
Aij(t) = I[K * s]i,;(t)] + 5
N S
Vg (K % b)ij| + 8 "

where K is a symmetric kernel with one at the origin and consisting
of the weights w away from the origin.

The maximization step is more involved, due to the likelihood
of y given s and b. For a Gaussian likelihood, we would recover the
RWLI1-SF algorithm in [14, 15, 17, 18], however low-light TP data
can be better modeled by a Poisson likelihood. Fortunately, meth-
ods, such as SPIRAL-TAP have can infer sparse causes for Poisson
observations [19]. This algorithm is summarized in Algorithm 1.

Algorithm 1 Sparse spatial filtering for calcium image denoising.
Seta, K
repeat ~
{8,b} < argmin, » —log(p(yls, b)) — X |si; ()| Ai;(t) —
22 1bi 5 7 .
a+
Aig (1) T ST, 0T
o a+1
Ying < ‘?*Bi,j‘+n
until Convergence
Output b and s

4. RESULTS

We explore our denoising method by analyzing 2000 frames of TP
microscopy data taken in the visual cortex of awake mice, stimulated
in a virtual reality environment, expressing the GcAMP6f protein.
As the microscope returns shifted and scaled noisy photon counts,
we shifted the data by the smallest value in the data to make all val-
ues positive, scaled the data by the inverse of the Fano factor (the
variance over the mean) to make the mean and variance of the data
equal, and rounded the data to create integer data. The integer data
was run through Algorithm 1 using parameters 5 = 1 and v = 80.
The third main parameter e was set as a function of position, o ;, to
account for variable illumination throughout the image. The weight-
ing kernels w; ; (t),w;,; were set to Gaussian shapes with a spatial
variance of 3 pixels, and the temporal kernel h(t) was matched to
empirically measured protein response functions [1].
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Fig. 4. Example neural spatial profiles found using NMF on the
raw data and the denoised data. Top: Top four neural profiles as
found by running NMF on data using standard pre-processing (in
this case a running 5-frame temporal averaging). Note that some of
the profiles include more than one neuron. Bottom: Top four spatial
profiles found with the denoised data. The resulting profiles have
less background noise and the second cells that appear in some of
the spatial profiles in the top row are better demixed.

~

Figure 2 demonstrates the difference between Gaussian and Poi-
son likelihood functions. While both methods give similar results,
the Poisson estimation recovered sparser estimates of the activity, in-
dicating a better match to the data statistics. Figure 3 shows a single
example frame of the original data and the output of the denoising
algorithm. The reduction in noise is apparent, and the activity loca-
tions are more distinguishable by eye. To test the extent to which the
denoising method helps isolate neural activity from different cells,
we apply NMF both to pre-processed TP data from the upper-right
hand portion of the image, as well as to the denoised data. Figure 4
shows the top four found profiles for each (pre-processed data on top
and denoised data on the bottom). The results using the denoised
data show far less contamination of neural profiles, demonstrating
clear isolation of different cells.

5. CONCLUSIONS

We demonstrate in this work an alternative to pre-processing of TP
microscopy data for neural recordings. Our method accounts for the
expected temporal sparsity and spatial cohesion of neural activity, as
well for providing a means to use Poisson measurement statistics in
place of more common Gaussian statistics. The resulting reweighted
algorithm denoises TP data and allows for improved demixing using
either automated or manual methods.

A number of challenges remain in applying our method more
broadly. First, the computational is significantly higher than stan-
dard pre-processing. Faster deconvolution algorithms would dras-
tically reduce the run-time and should be explored. Additionally,
parameter setting for our model was accomplished manually. As
poor parameter selection can yield erroneous results, automated pa-
rameter setting would drastically improve the utility of our method.
In particular, learning optimal dependency kernels (i.e. w; ;(t) in
this work) directly from TP movies is especially important, as these
kernels convey important information about the expected statistics
of TP data. Additionally, while our algorithm is currently indepen-
dent of demixing methods, our model could be adapted as a front-
end to demixing algorithms, creating a single automated method that
demixes given a more complete statistical model of the data. Finally,
recent work in [20] can potentially be used to provide quantitative
metrics for the success of our demixing steps.
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