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ABSTRACT
The increasing use of wearable technology creates the need for re-
liable signal representations with low storage and transmission cost,
as well as interpretable models that can be used to translate signals
into meaningful constructs. We propose a knowledge-driven sparse
representation of the electrocardiogram (ECG) that takes into ac-
count the characteristic structure of the corresponding signal through
the use of appropriately designed parametric dictionaries contain-
ing Hermite and amplitude-modulated sinusoidal atoms for the P, T
waves and QRS complex, respectively. We further demonstrate how
these atoms can be used to automatically interpret the ECG morphol-
ogy through the QRS detection and beat classification. Our results
indicate relative errors of the order of 10−2, compression rates 10
times smaller than the actual signal, as well as reliable QRS detection
(93%) and beat classification (78%). These are discussed in terms of
developing efficient and reliable wearable ECG applications.

Index Terms— Electrocardiogram, wearable technology, QRS
detection, beat classification, sparse representation

1. INTRODUCTION
Recent advances in wearable technology are permeating everyday
life imposing new challenges to the processing of the acquired
biomedical signals. Though data mining and machine learning pro-
vide benefits to this “data-intensive” field, they are prone to unreli-
able discoveries and non-intuitive findings [1]. For this reason, the
development of knowledge-driven techniques is equally important in
order to enhance and complement data-driven approaches.

The electrocardiogram (ECG or EKG) is a diagnostic tool rou-
tinely used to assess the activity of the heart through the electrical
potential difference during the depolarization and repolarization of
the myocardial fibers [2]. While there exist standard techniques to
acquire the ECG trace, its interpretation requires significant training
and expertise. This becomes more challenging in the light of wear-
able applications, where the long-term continuous ECG monitoring
results in large amounts of data. The limited presence of human ex-
perts renders automatic processing necessary not only to store and
transfer the acquired data, but also to meaningfully interpret them.

ECG depicts a characteristic periodic structure over time. It
consists of three main parts, the P, QRS, and T waves, represent-
ing the heart’s atrial depolarization, ventricular depolarization, and
ventricular repolarization, respectively. This typical shape has been
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taken into account for the development of appropriate mathemati-
cal models. Previous works have used Hermite functions [3, 4] and
amplitude-modulated (AM) sinusoidal waveforms [5] to represent
the QRS complex or even the entire beat. These models have been
separately employed for QRS detection, ectopic beat detection and
beat classification and are evaluated through visual inspection and
limited quantitative analysis. Our approach builds upon the Hermite
and AM sinusoidal functions [3, 5], which form the basis of the dic-
tionary atoms employed in a sparse representation framework. The
dictionary atoms can be interpreted in relation to the P, QRS, and
T waves. Unlike previous approaches, no pre-processing or QRS
segmentation is needed beforehand. We note that previous works
involving sparse decomposition of the ECG have mainly used dic-
tionaries of wavelet, DCT, and Gabor atoms [6, 7, 8], which are less
interpretable for the considered signal.

Besides deriving signal representation, it is equally important
to develop interpretable models which provide meaningful informa-
tion about the acquired signals at a higher level. Two very com-
mon ECG applications include the automatic detection of QRS com-
plexes and the classification of normal and abnormal beats. Previ-
ous works on QRS detection have proposed rule-based approaches
through frequency and time-based transformations [9, 10], as well
as machine learning techniques with a variety of features [11, 12].
Beat classification has been mainly performed through wavelet mea-
sures [13, 14, 15, 16], temporal features [17, 18], and morphological
descriptors [19, 20, 21]. Compared to previous work, where each of
these tasks is examined separately, we demonstrate that our proposed
ECG representation provides a unified foundation for both QRS de-
tection and beat classification –and ultimately for additional tasks of
interest.

We propose a unified model for representing and interpreting
the ECG, that can be further used for detecting and classifying the
corresponding heart beats. We represent ECG as a combination of
exemplar parametric signals designed to match its typical structure
containing the P, QRS, and T waves. In order to preserve the low di-
mensionality of the model, we use sparse representation techniques,
to select a very small set of atoms from a dictionary. Different types
of atoms are used to represent the different ECG parts: an approach
which promotes the interpretability of our model. In order to assess
the interpretability of our approach, we use the selected atoms and
their corresponding parameters as features for QRS detection and
beat classification. Our results –evaluated on the MIT-BIH Arrhyth-
mia database [22]– indicate low reconstruction errors, as well as high
accuracy in QRS detection (reaching up to 93%) and beat classifica-
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tion (78 and 69% for binary and 3-way classification, respectively).
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Fig. 1. Sparse representation of an exemplar ECG with 10 orthog-
onal matching pursuit (OMP) iterations. (a) Original and recon-
structed ECG. (b) The first nine selected AM sinusoidal (AM sin.)
and Hermite atoms scaled with OMP-derived coefficients. (c) The
AM sinusoidal atoms used in the heuristic QRS detection and their
grouping. (d) The segments of length S used to classify the presence
(dark grey) or absence (light grey) of an R peak during the machine
learning based QRS detection. (e) The atoms used to represent the
morphology of the P, QRS, and T waves during beat classification.

2. METHODOLOGY
We propose a knowledge-driven representation of the ECG signal,
that uses sparse decomposition techniques with appropriate signal-
specific dictionaries to capture the typical ECG components. Simi-
lar approaches have been examined for other biomedical signals of
characteristic structure with benefits in signal compression and in-
terpretation [23, 24]. In the following, we will describe the dictio-
nary design and sparse decomposition approach (Section 2.1) and
demonstrate how these can be employed for automatic QRS detec-
tion (Section 2.2) and beat classification (Section 2.3).

2.1. Knowledge-Driven Sparse Representation of ECG
Dictionaries contain three types of atoms corresponding to differ-
ent ECG parts. Signal levels are captured with straight lines ex-
pressed as gα(t) = ∆0 + ∆ · t, where ∆0 ∈ {−20,−15, . . . , 10}
and ∆ ∈ {−.03,−.29, . . . ,−.001, 0, .01, .02, . . . , .3} are the off-
set and slope, respectively. We employ AM sinusoidal waveforms
(Fig. 2a) to approximate the burst-type shape of the QRS complex,
i.e. gβ(t) = exp

(
b
a

(1− cos (a(t− t0)))
)

cos (θ (t− t0) + φ),
where a ∈ {.01, .02, . . . , .08} and b ∈ {1, 1.5, 2, 2.5} are the mod-
ulating factor parameters, φ ∈ {.9π, 1.3π} is the phase, θ = 7 the
carrier frequency, and t0 the time shift. We further use zero-order
Hermite polynomials (Fig. 2b) for the P and T waves with equation
gγ(t) = 1√

w
√
π

exp−(t−t0)2/2w2

, where w ∈ {1, 3.5, . . . , 38.5}
and t0 are the time scale and shift, respectively. The morphol-
ogy of several abnormal beats (e.g. premature ventricular beat)
led us to introduce negated AM sinusoidal and Hermite atoms, i.e.
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Fig. 2. Example of zero-order Hermite and AM sinusoidal atoms.

gδ(t) = −gβ(t) and gε(t) = −gγ(t). Time shift ranged within
t0 ∈ {−600,−588, . . . , 600} (in samples) in order to capture all
possible locations of the P, QRS, T waves within the analysis frame,
as well as to represent partially observed waves at the edges of the
frame. Atoms whose non-zero region lied outside the analysis frame
were omitted, resulting in 57,817 atoms: 427 straight lines, 14,412
Hermite, and 42,978 AM sinusoidal. The parameters of the dictio-
nary atoms were empirically selected based on data inspection and
consistent with the expected ECG shapes, e.g. the time duration of
the Hermite (P, T) is larger than the AM sinusoidal (QRS) [25].

Sparse decomposition is performed with orthogonal matching
pursuit (OMP) because of its efficiency and low computational
cost [26]. Reconstruction quality was evaluated through the rela-
tive root mean square (RMS) error. Compression rate was further
computed as the number of bits representing 1 sec of the actual sig-
nal, where 1 bit was used for the type of selected atom and whether it
was negated, 16 bits for the time shift, and 32 bits for the remaining
parameters. Experiments were performed with an analysis window
of 600 samples (i.e. 1.67 sec) and 20 OMP iterations. Figs. 1a-b pro-
vide an example of a typical ECG and the selected dictionary atoms,
which will be used for interpreting the signal (Sections 2.2, 2.3).

2.2. Detection of QRS Complexes
The parametric nature of dictionary atoms (Section 2.1) can afford
us insights about the morphology of the corresponding signal. We
first demonstrate how we can use the selected atoms to detect the
QRS complex (i.e. the peak of the R wave) through a heuristic-based
framework and a machine learning approach.

2.2.1. Heuristic QRS Detection
This rule-based framework takes into account the location and co-
efficients of the selected AM sinusoidal atoms, which are designed
to capture the QRS complex. Let Iβ and Iδ be the indices of the
selected AM sinusoidal and negated AM sinusoidal atoms for the
current analysis frame, and cβk , k ∈ Iβ , and cδl , l ∈ Iδ , be the cor-
responding coefficients. QRS complexes are likely to be represented
by AM sinusoidal atoms with high coefficients, therefore we first
find the AM sinusoidal atoms whose coefficients ci are higher than
a fraction p = .3 of the maximum coefficient within the frame: I ={
i : i ∈ Iβ

⋃
Iγ

∧
ci > p ·max

{
{cβk}k∈Iβ

⋃
{cδk}k∈Iδ

}}
.

The set I might contain more than one AM sinusoidal for one R
peak –especially for abnormal beats. Given this observation, we per-
form a histogram grouping based on the location of AM sinusoidal
atoms from set I. For example, in Fig. 1c two AM sinusoidal atoms
were selected for each QRS complex and were binned together by
our algorithm. Since the histogram might contain negated atoms
(from Iδ), the maximum (or minimum) location of the atom with
the highest coefficient in each bin is mapped to the closest maxi-
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mum (or minimum) point on the actual ECG signal. If two QRS
segments were located closer than 25 samples, we ignore the one
with the lower amplitude.

2.2.2. Machine Learning Based QRS Detection

While heuristic rules can reliably detect normal beats, the large vari-
ability of ECG signals –confounded by the presence of a wide range
of abnormalities– led us to the development of an automatic deci-
sion making framework. According to this, we divide each analy-
sis frame determined by the ECG representation (Section 2.1) into
smaller segments of S=25,50,75 samples (Fig. 1d). We then cast
the QRS detection as a classification problem, in which each small
segment is classified on whether it contains an R peak or not.

The features for classification are the parameters and coefficients
of the two AM sinusoidal and the two Hermite atoms with the high-
est coefficients, whose location is within the corresponding segment.
If the current segment does not contain as many atoms, we use those
closest to the center of the segment. We further include the distance
between the peak of each selected atom and the center of the cor-
responding segment, as well as the number of AM sinusoidals and
Hermites within the segment in order to get a measure of the corre-
sponding signal energy. This results in 20 features in total. We tested
different feature matrices by varying the number of OMP iterations
in the ECG representation (10,15,20). In contrast to the heuristic
approach (Section 2.2), this method incorporates additional infor-
mation from the Hermite atoms, which are particularly useful in the
case of morphologically abnormal QRS complexes. Classification
is performed using an 8-fold cross-validation using random forests,
because of their ability to handle the continuous and discrete values
of our feature space.

Based on the binary classification, we detect the actual R peak
locations as follows. In the absence of an R peak decision, we per-
form no further action. However, if the ECG segment was classified
as having an R peak, we detect its maximum location at the actual
signal (or minimum, if the AM sinusoidal with the maximum coeffi-
cient within the segment was a negated atom). If a QRS complex was
not detected for more than five consecutive segments (0.35-1sec), we
locate the segment containing the atom with the highest coefficient
and add a QRS based on the maximum location of the actual signal
(or minimum, if this atom was negated). Similar to Section 2.2, we
combine the local decisions from all analysis frames by making sure
that two QRS peaks are more than 25 samples away.

2.2.3. Evaluation

We evaluate the detected QRS complexes against the ground truth
provided by human annotators. We use dynamic time warping
(DTW) to get an optimal match between the detected and annotated
R peaks. We calculate the F-score using a maximum distance thresh-
old (3-10 samples) between the DTW matched R peaks. We used the
classical method of Pan and Tompkins [9] as a baseline for this task.

2.3. Classification of beat abnormalities
The presence of abnormal ECG beats, which are morphologically
different than normal ones, can be indicative of various heart con-
ditions. We demonstrate that the ECG-specific dictionaries (Sec-
tion 2.1) yield features capable of distinguishing normal from ab-
normal beats (2-way classification), as well as the common abnor-
malities, such as atrial premature beat, paced beat, and premature
ventricular contraction (3-way). We further combine the decisions

from the above tasks into a 4-way classification by assigning the la-
bels from the 3-way task to the abnormal beats detected during the
binary classification.

In order to capture the morphology of each QRS, the proposed
features include the parameters and coefficients of the selected AM
sinusoidal and Hermite atoms located within half the R-R distance
from the R peak. We further consider the Hermite atoms with the
highest coefficients lying within a 0.65 to 0.15 fraction of the R-R
distance on the left to capture possible abnormalities in the P wave,
and similarly on the right to represent the T wave. In case no atom
was found within the predetermined boundaries, the corresponding
features were replaced by missing values. The distance between the
center of each atom and the R peak was also used to get an esti-
mate about how close the selected atoms are from the actual QRS
complex. We finally include the R-R interval lengths on either side
of the current peak and the ratio of the left R-R length to the right
one, resulting in 20 features. In the case of the first beat of our
working example (Fig. 1e), we used the parameters of one AM sinu-
soidal and two Hermite atoms. Since no Hermite is located close to
the QRS, the corresponding features were replaced by missing val-
ues. This would not be the case for an abnormal beat, whose QRS
complex is more likely to be represented by AM sinusoidal and Her-
mite atoms. Classification is performed with a leave-one-subject-out
cross-validation using a decision tree whose optimal pruning level
was determined through a nested cross-validation on the train set.
We compute the unweighted accuracy (UA) of classification, be-
cause of the unbalanced class distribution.

The baseline includes the wavelet features, which are widely
used in this task [14, 15]. Decomposition was performed with
Daubechies 2 and 4 wavelets and statistical measures of maximum,
minimum, and variance were extracted at each of the 8 levels. The
statistics at the last level are redundant and therefore ignored, result-
ing in 21 features in total.

3. EXPERIMENTS

3.1. Data Description
We worked with the publicly available MIT-BIH Arrhythmia
database [22] containing 48 half-hour excerpts of ambulatory ECG
recordings with sampling frequency of 360Hz. Two or more cardiol-
ogists went independently through each recording and annotated the
location and type of each beat, resulting in approximately 109,000
beat labels, out of which 35080 are abnormal. From the latter set,
2539, 7028, and 7075 samples are labelled as atrial premature beat,
paced beat, and premature ventricular contraction, respectively.

3.2. Results
Our results indicate that the proposed dictionaries can capture the
typical ECG shape, as well as the morphology of several abnormal-
ities, even when using only 10 OMP iterations (Fig. 3). These are
further supported by low reconstruction errors and compression rates
(Fig. 4); the latter are around 10 times smaller compared to encoding
the actual signal, i.e. 11,520bits/sec. It is noteworthy that the RMS
error decreases steeply between 1-7 iterations, while the decrease is
flatter after that point. This can be justified by the fact that within
1.67sec, the signal level is captured by one straight line, while the
two beats that occur on average are each represented by three Her-
mite/AM sinusoidal atoms for the P,T and QRS waves.

We further observe the usefulness of our model for locating ECG
beats (Fig. 5). F-scores are comparable to the Pan-Tompkins al-
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Fig. 3. Example original and reconstructed electrocardiogram
(ECG) signals using 10 and 20 orthogonal matching pursuit (OMP)
iterations for different beat types. Same legend applies to all plots.
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Fig. 4. Relative root mean square (RMS) error between original and
reconstructed signals and compression rate computed over 1-20 or-
thogonal matching pursuit (OMP) iterations.

gorithm [9], an extensively used approach for this task. Machine
learning based QRS detection slightly outperforms the heuristic one,
probably because of its ability to take larger signal context into ac-
count, with larger segment lengths being more beneficial. The pro-
posed model can capture valuable information about the morphology
of the ECG signal and demonstrate better discriminative properties
compared to the baseline wavelet measures (Table 1).

4. DISCUSSION
The proposed knowledge-driven ECG representation depicts a vari-
ety of benefits. Muscle noise is taken care of through the design of
dictionary atoms that are created to represent only meaningful sig-
nal variations. This is further leveraged by the fact that the Hermite
and AM sinusoidal atoms lie in lower frequency bands and contain
higher energy compared to muscle noise. Baseline wander [27] is
addressed through short duration analysis frames and the presence
of straight lines with different slopes in the dictionary. No pre-
processing or segmentation is needed, therefore our model operates
directly on the raw ECG signal reducing the computational cost.

Our approach provides a unified foundation for different types
of ECG analyses. In wearable applications, such models are ben-
eficial for data transmission and compression. Conditioned on the
fact that the dictionary is known, we can transmit and store only the
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Fig. 5. QRS detection F-score plotted against different maximum
distance thresholds between the real and detected R peaks. Results
for the machine learning approach are obtained with a variety of
orthogonal matching pursuit iterations (K) and segment lengths (S).

Table 1. Unweighted accuracy for classifying between normal and
abnormal beats (2-way), across atrial premature beat, paced beat,
and premature ventricular contraction (3-way), and across all the
above (4-way).

Features Unweighted accuracy (%)
2-way 3-way 4-way

Daubechies Wavelets 2 73.1 49.8 50.2
Daubechies Wavelets 4 74 50.3 46.2

Proposed ECG Representation 78.4 68.6 60.2

indices of the selected atoms and their corresponding coefficients.
Given the initial signal representation, it is possible to build appli-
cations that can detect meaningful signal characteristics (e.g. QRS
detection) and interpret the underlying physiological condition (e.g.
beat classification). The parametric nature of the designed dictionar-
ies allows the use of heuristic rules (Section 2.2.1), that can operate
in an unsupervised way and be computationally more efficient than
purely data-driven machine learning approaches. These can be ex-
tended to an endless count of applications involving physical activity
and well-being (e.g. heartbeat tracking during exercise, detection of
increased stress levels, tracking of patients with heart conditions).

Limitations of our approach include the use of empirical values
for the atom parameters, which can be alleviated with data-driven
dictionary learning [28]. Although QRS detection and beat classifi-
cation results are comparable and sometimes better than the consid-
ered baselines, they can be still outperformed by other approaches in
the literature. However, our goal was not to produce state-of-the-art
models tuned for one task, but to demonstrate the feasibility of the
proposed unified approach for multiple tasks of interest.

5. CONCLUSIONS
We proposed a knowledge-driven unified framework to represent the
ECG through the use of sparse representation techniques and appro-
priately designed parametric dictionaries, whose different types of
atoms capture different parts of the signal. We further demonstrated
how the atoms included in the representation can be used to obtain
valuable information for the underlying ECG signal. Our results in-
dicate high quality of signal reconstruction, as well as reliable detec-
tion of the R peaks and moderately precise beat classification. Future
work will evaluate the feasibility of our approach for wearable com-
puting applications and will explore how the proposed knowledge-
driven framework can be complemented with data-driven methods.
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