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ABSTRACT 
 
Accurate heart rate (HR) estimation from the 
photoplethysmographic (PPG) signal during intensive 
physical exercises is tackled in this paper. Wiener filters are 
designed to attenuate the influence of motion artifacts. The 
phase vocoder is used to improve the initial Discrete Fourier 
transform (DFT) based frequency estimation. Additionally, 
Viterbi decoding is used as a novel post-processing step to 
find the path through time-frequency state-space plane. The 
system performance is assessed on a publically available 
dataset of 23 PPG recordings. The resulting algorithm is 
designed for scenarios that do not require online HR 
monitoring (swimming, offline fitness statistics). The 
resultant system with an error rate of 1.31 beats per minute 
outperforms all other systems reported to-date in literature 
and in contrast to existing alternatives requires no parameter 
to tune at the post-processing stage and operates at a much 
lower computational cost. The Matlab implementation is 
provided online.  
 

Index Terms—Photoplethysmography, motion 
artifacts, spectrum estimation, Viterbi decoding 
 

1. INTRODUCTION1 
 
Wearable devices such as wrist-bands, smart-watches, are 
equipped with a number of sensors and offer many useful 
fitness tracking features. Photoplethysmography (PPG) 
based heart rate (HR) monitoring has become a popular 
alternative to traditional Electrocardiography as it allows for 
HR monitoring at the peripheral positions such as earlobes, 
fingertips or wrists which is seen much more convenient [1].  

PPG sensors which are embedded in these wearable 
devices emit light to the skin and measure the changes of 
intensity of the light which is reflected or transmitted 
through the skin. The periodicity of these measurements in 
most cases corresponds to the cardiac rhythm, and thus, HR 
can be estimated from the PPG signal [1, 2]. 
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During physical exercise the PPG signal is corrupted 
with motion artifacts (MAs). MAs significantly affect the 
accuracy of HR estimation in free living conditions thus 
preventing the straight-forward usage of PPG. A number of 
methods have been proposed to remove or attenuate MAs in 
PPG signals using the simultaneously recorded 
accelerometer signals. These methods include adaptive 
filtering [3, 4, 5, 6], independent component analysis [7], 
decomposition models [8, 9, 10, 11], spectral subtraction 
[12, 13, 14], and Kalman filtering [15].  

Along with de-noising routines the accurate methods 
utilize sophisticated post-processing of HR estimates [2, 6, 
8, 10, 11, 14]. The post-processing steps often include 
spectral peak detection, peak selection, temporal peak 
tracking, smoothing, etc. The post-processing is usually 
composed of several heuristic if-then rules and associated 
thresholds. These thresholds are tuned and tested on the 
same data. However, when reporting the results, the effect 
of post-processing is often overlooked.  

This work enhances the previously developed HR 
estimation system [16] with a threshold-free post-processing 
step. Specifically, a time-frequency spectrogram is seen as a 
state-space matrix of emission probabilities and the Viterbi 
decoding algorithm is used to find the most probable path 
through the PPG recording.  

 
2. DATABASE AND METRICS 

 
The dataset which is publically available 
(http://zhilinzhang.com/spcup2015/data.html) consists of 23 
5-min recordings of subjects performing various physical 
exercises ranging from walking or running on a treadmill 
(recordings 1-12) to jump-ups or boxing (recordings 13-23). 
Each recording consists of two PPG and three accelerometer 
signals. The ECG signal which was recorded simultaneously 
from the chest was used to provide the ground truth HR in 
BPM as described in detail in [2, 8]. ECG-based HRs were 
calculated for every 8s window with a 2s shift. The same 
window length and shift are suggested for HR estimation 
from PPG to have the same number of HR estimates and 
true HRs. All signals were sampled at 125 Hz.  

The metrics to measure the performance of developed 
HR estimators are based on the Absolute Error (AE) of each 
estimate:  
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where fest(i) and ftrue(i) denote the estimated and the true HR 
value in the i-th time window in BPM, respectively. To 
summarize the performance for a whole recording, Average 
Absolute Error (avAE) and Standard Deviation of the 
Absolute Error (stdAE) are reported:  
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where N is the total number of estimates (number of 
windows).  

These metrics are computed for each of the 23 
recordings and the average performance across subjects is 
reported.  
 

3. HR ESTIMATOR DESIGN 
 
The flowchart of the developed system (WFPV+VD) is 
shown in Fig. 1. The first 5 blocks are explained in detail in 
[16] and are summarized here. The PPG and accelerometer 
signals are segmented to 8s windows with 2s shift, filtered 
with a 4th order Butterworth band-pass filter (0.4-4Hz) and 
down-sampled from 125 to 25 Hz as shown in Fig. 2(a). The 
PPG signals are then normalized to zero mean and unit 
variance and averaged. The signals are then subjected to the 
DFT with the number of bins set to 1024. The content that 
corresponds to the HR between 60 BPM and 180 BPM is 
kept as shown in Fig. 2(b).  

Wiener filtering [17] is applied to attenuate the effect of 
MA in the PPG signal. The frequency-domain Wiener filter 
is given as:  
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The noise spectrum, PNN, is estimated by averaging the 

spectrum of the 3 accelerometer signals. The clean PPG 
spectrum, PXX, can be estimated as PYY(f) – PNN(f) or 
recursively from previous filter outputs. Depending on how 
the power spectrum of the clean PPG signal is estimated, 
two Wiener filters are implemented:  
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where w(t,k) is the weight of the k-th frequency bin at time, 
t. The power spectrums of noise and PPG in Eq. 5 and Eq. 6 
are normalized by their maximum values to be 
commensurable. The power spectrum of the observed signal 
is averaged over the past C spectral envelopes (C1=1, C2=3). 
If C=0, then the Wiener filter in Eq. 5 performs a simple 
version of spectral subtraction.  

The outputs of both Wiener filters are normalized by 
their standard deviation and averaged to represent the final 
spectral envelope of the cleaned PPG signal. The dominant 
frequency (the frequency with the highest magnitude) is 
converted to the HR estimate in BPM as shown in Fig. 2(c). 

The minimum frequency that can be estimated (the 
Rayleigh frequency) is limited by the size of the window of 
the analyzed data (8s) and equals to 1/8*60 = 7.5 BPM. 
Apart from zero-padding which is used here to interpolate 
the spectral envelope to other frequencies by decreasing the 
frequency spacing between neighboring DFT bins, the phase 
vocoder technique [18–20] is employed to refine the initial 
HR estimate through the estimation of the instantaneous 
frequency as the rate of change of phase angle at time [22]. 
Phase changes between two consecutive frames encode the 
deviation of the true frequency from the bin frequency. Thus 
the phases from the chosen peak in the magnitude spectrum 
from the current and previous frames can be used to refine 
the initial frequency estimation:  
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where θ2, θ1 are the two phases from the current and 
previous frames, respectively; t2, t1 are the time stamps of 
the two frames, here t2-t1 is a windows shift and is equal to 
2s, n is a positive integer. The values of ϕnew are computed 
for several n using Eq. 7, and the value of ϕnew which is 
closest to the initial peak is chosen as shown in Fig. 2(d).  

The novel step proposed in this work performs post-
processing in a probabilistic framework using Viterbi 
decoding [21]. The spectrogram of a cleaned PPG recording 
(after Wiener filtering) is considered as a N-by-T state-space 
map of emission probabilities (likelihoods), B, for N states 
(discrete values of HR as determined by the size of DFT) 
and T observations (time windows), where Bjt is a magnitude 
value of the jth DFT bin for the tth time window. An example 
of emission probability matrix is shown in Fig. 3(a) for rec. 
21. The N-by-N matrix of transition probabilities, A, where 
Aij represents the probability of changing from the ith HR to 
the jth HR, is estimated from the ground truth by counting 
the transitions using the leave-one-recording-out procedure. 
In this manner, the ground truth of the testing recording is 
never used but the ground truths of all other recordings are 
used to estimate the transition probability matrix. An 

Fig.1. The flowchart of the developed HR estimation system (WFPV+VD).  
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example of a log transition probability matrix is visualized 
in Fig. 3(b). It can be seen that the variance of the transition 
probabilities increases with the increase of HR.  

The Viterbi algorithm is then applied to recursively 
estimate the most likely path (the path with the highest 
cumulative log probability) through the time dimension, t, 
using emission and transition probability matrices, B, A: 
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1 ≤ > ≤ M, and F�
�� = 7�J��, 1 ≤ � ≤ M, πi, are the prior 
probabilities.  

After the recursion is computed the state sequence is 
backtracked as:  
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The state sequence is converted to HR estimates which 

are then smoothed with a central moving average filter of 4 
estimates. The Viterbi decoding effectively performs post-
processing in a threshold-free probabilistic manner.  

It is worth noting that the Viterbi decoding is applied to 
the grid of the DFT bin indices, whereas the phase vocoder 
is used to adjust the frequency of each bin.  

4. RESULTS AND DISCUSSION 
 
Table I details the performance of the system. On the 
database of 23 recordings, the system results in an avAE of 
1.31 BPM with sdAE of 1.77 BPM.  

Table I also shows the performance of the system if a 
certain block from Fig. 1 is removed. This gives an 
indication of the contribution of each system constituent 
towards the final performance. It can be seen that without 
Wiener filtering (W/o WF in Table I), the performance 
degrades from 1.31 to 5.71 BPM. This result represents a 
HR estimation system that does not address MAs and also 
shows the effect of MAs in the database. Using only WF1 
the system results in an avAE of 1.43 BPM, whereas using 
only WF2 the system results in an avAE of 1.46 BPM, to 
compare with the avAE of 1.31 BPM using both filters 
combined. A refinement introduced by the phase vocoder 
reduces the error from 1.47 to 1.31 BPM (W/o PV in Table 
I). Finally, the system performance without Viterbi post-
processing (W/o VD) results in an avAE of 5.86 BPM.  

It can be seen that post-processing of HR estimations 
has an effect on the performance, similar in size to the 
contribution of signal de-noising. The post-processing steps 
in approaches which were previously evaluated on the same 
dataset usually rely on a number of heuristic rules and 
thresholds [2, 8, 6, 10, 11, 14]. These rules and threshold 

  

   
 

Fig. 2.  Signal transformation in the developed HR estimation system. Plot (a) shows two PPG and three accelerometer signals after filtering; (b) shows 
the spectral envelope and its maximum after the DFT is applied to the PPG, (c) shows the processed spectral envelope and its maximum after MAs were 
attenuated with Wiener filtering; (d) shows the peak and the spectral envelop before and after the phase vocoder. Note that the instantaneous frequency 
with the phase vocoder during HR estimation is computed only for the peak. 

(a) 

(c) 
(d) 

(b) 
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values are tuned and tested on the same data and the best 
possible results are usually reported. In this manner, the 
number of rules (degrees of freedom) is directly linked to an 
improved performance but it comes at the cost of an 
increased risk of poor generalization on the unseen data. It is 
worth emphasizing that in this work the proposed post-
processing requires no thresholds and is performed in the 
well-established probabilistic framework.  

Table II provides a comparison with other HR 
estimation algorithms. Many developed systems report 
results only on an ‘easier’ part of the dataset (the first 12 
PPG recordings) [6, 10, 11]. These PPGs are captured 
during running on a treadmill. The recordings are less 
corrupted with irregular MAs. Only a few techniques are 
evaluated on a more difficult part of the dataset (the last 10 
recordings), in addition to the first 12. This is replicated here 
for comparative purposes (that is the WFPV+VD is 
evaluated on 22 recordings, rec. 13 is excluded to make the 
results comparable with other methods). These systems 
include: a three-stage method which is based on signal 
decomposition, sparsity-based high-resolution spectrum 
estimation, and spectral peak tracking and verification 

(TROIKA, [2]); a method which jointly estimates the 
spectrum of PPG and accelerometer signals using a common 
sparsity constraint on the spectral coefficients (JOSS, [8]); a 
time-varying spectral filtering algorithm for reconstruction 
of motion artifact (SpaMa, [13]), a HR estimation algorithm 
based on asymmetric least squares spectrum subtraction and 
Bayesian decision theory (Spectrap, [14]). As it can be seen 
from Table II, the WFPV+VD system outperforms every 
method on the database. It is worth mentioning that the first 
three methods perform online processing, whereas Spectrap 
is the only method that performs offline processing. Viterbi 
decoding in this work requires the spectrogram of the whole 
recording to be available beforehand.  

The proposed algorithm takes under 10s to process the 
whole PPG dataset of 23 recordings (Matlab R2013b @ 
Intel Core E7200 2.5GHz). This time compares favorably 
with other techniques published. It is reported that to 
process the first 12 PPG recordings TROIKA [2] and IMAT 
[6] takes several hours, JOSS [8] takes 300s, EEMD [10] 
takes 200s. The algorithm is well suited for fitness tracking 
and health monitoring in wearable devices [23]. 

The presented system with its superior accuracy and a 
comparatively low computational cost can be used for HR 
monitoring for swimmers or calculation of HR summary 
statistics. Both tasks require quick processing but do not 
require on-the-fly HR estimation.  

For the purpose of reproducibility the Matlab 
implementation along with the main results is available 
online (https://github.com/andtem2000/PPG). 
 

5. CONCLUSIONS 
 
This work proposed an alternative threshold-free step to 
post-process HR estimates which were derived from PPG. It 
was shown that HR estimate post-processing and motion 
artefact rejection had a commensurable effect on the 
performance. Viterbi decoding was applied to spectrogram 
to find the path through time-frequency state-space plane of 
HR estimates. Evaluated on a publicly available dataset the 
system resulted in an error of 1.37 BPM which 
outperformed alternatives reported to-date. The novel post-
processing requires no parameter to tune and the resultant 
system operates at a much lower computational cost.  

TABLE I.  
PERFORMANCE OF HR ESTIMATION SYSTEM  

WFPV+VD ON 23 PPG RECORDINGS 
  WFPV+VD W/o WF W/o PV W/o VD 

All 
avAE 1.31 5.71 1.47 5.86 
sdAE 1.77 7.16 1.81 9.10 

 
TABLE II.   

COMPARISON OF HR ESTIMATION  
SYSTEMS ON 22 PPG RECORDINGS 

 TROIKA JOSS SpaMa Spectrap WFPV+VD 
avAE 2.73 2.08 2.01 1.79 1.24 

 

  

 
 

Fig. 3. (a) Time-frequency state-space plane of DFT magnitudes 
considered as log emission probabilities, with superimposed ground 
truth HRs in white. The output of Viterbi decoding is shown as a 
dotted green line. (b) A matrix of estimated log transition 
probabilities. Best viewed in colour.  

(a) 

(b) 
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