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ABSTRACT

Accurate heart rate (HR) estimation from
photoplethysmographic (PPG) signal during
physical exercises is tackled in this paper. Widitiers are
designed to attenuate the influence of motionauts. The
phase vocoder is used to improve the initial DiscFeourier
transform (DFT) based frequency estimation. Addgidy,
Viterbi decoding is used as a novel post-processteg to
find the path through time-frequency state-spae@el The
system performance is assessed on a publicallyahlei
dataset of 23 PPG recordings. The resulting algorits

During physical exercise the PPG signal is cormipte
with motion artifacts (MAs). MAs significantly aff¢ the

theaccuracy of HR estimation in free living conditiotisus
intensivepreventing the straight-forward usage of PPG. A Ineinof

methods have been proposed to remove or attenudseiM
PPG signals using the simultaneously recorded
accelerometer signals. These methods include a®apti
filtering [3, 4, 5, 6], independent component as&y[7],
decomposition models [8, 9, 10, 11], spectral sdtibn
[12, 13, 14], and Kalman filtering [15].

Along with de-noising routines the accurate methods
utilize sophisticated post-processing of HR estand®, 6,

designed for scenarios that do not require onling H 8, 10, 11, 14]. The post-processing steps ofterudiec

monitoring (swimming, offline fithess statistics)The
resultant system with an error rate of 1.31 beatsnpinute
outperforms all other systems reported to-datetémaiture
and in contrast to existing alternatives requireparameter
to tune at the post-processing stage and operagesnach
lower computational cost. The Matlab implementatien
provided online.

Index Terms—Photoplethysmography, motion
artifacts, spectrum estimation, Viterbi decoding

1. INTRODUCTION
Wearable devices such as wrist-bands, smart-watcres

equipped with a number of sensors and offer mamyuus
fithess tracking features. Photoplethysmography GPP

spectral peak detection, peak selection, tempoesdkp
tracking, smoothing, etc. The post-processing igallg
composed of several heuristicthen rules and associated
thresholds. These thresholds are tuned and testetheo
same data. However, when reporting the results effest
of post-processing is often overlooked.

This work enhances the previously developed HR
estimation system [16] with a threshold-free pastepssing
step. Specifically, a time-frequency spectrograrseisn as a
state-space matrix of emission probabilities ared \fiterbi
decoding algorithm is used to find the most probgtrth
through the PPG recording.

2. DATABASE AND METRICS

The dataset which is publically available

based heart rate (HR) monitoring has become a popul(http://zhilinzhang.com/spcup2015/data.htrmbnsists of 23

alternative to traditional Electrocardiography taalliows for
HR monitoring at the peripheral positions such adobes,
fingertips or wrists which is seen much more comwein[1].

5-min recordings of subjects performing various st
exercises ranging from walking or running on a dradl
(recordings 1-12) to jump-ups or boxing (recordiags23).

PPG sensors which are embedded in these wearaliiach recording consists of two PPG and three awrakter

devices emit light to the skin and measure the gharof
intensity of the light which is reflected or tranged
through the skin. The periodicity of these meas@®es in
most cases corresponds to the cardiac rhythm,harsd HR
can be estimated from the PPG signal [1, 2].
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signals. The ECG signal which was recorded simatiasly
from the chest was used to provide the ground trRhin
BPM as described in detail in [2, 8]. ECG-based hiRse
calculated for every 8s window with a 2s shift. Téame
window length and shift are suggested for HR editona
from PPG to have the same number of HR estimatds an
true HRs. All signals were sampled at 125 Hz.

The metrics to measure the performance of developed
HR estimators are based on the Absolute Error @Each
estimate:
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Fig.1. The flowchart of the developed HR estimaggatem (WFPV+VD).

AE; = |fest(i) — ftrue @l (1)

wherew(t,k) is the weight of thé-th frequency bin at time,
t. The power spectrums of noise and PPG in Eq. Teand
are normalized by their maximum values to be

wherefe(i) andfy(i) denote the estimated and the true HRcommensurable. The power spectrum of the obsefigedls

value in thei-th time window in BPM, respectively. To
summarize the performance for a whole recordingrage
Absolute Error §vAE) and Standard Deviation of the
Absolute Error ¢dAE) are reported:

avAE =% N AE; 2

®3)

SAAE = \/%Z?’zl(AEi — avAE;)?

is averaged over the pa&Stspectral envelope€(=1, G=3).
If C=0, then the Wiener filter in Eq. 5 performs a dienp
version of spectral subtraction.

The outputs of both Wiener filters are normalized b
their standard deviation and averaged to reprebenfinal
spectral envelope of the cleaned PPG signal. Therdmt
frequency (the frequency with the highest magnituide
converted to the HR estimate in BPM as shown in &{g).

The minimum frequency that can be estimated (the
Rayleigh frequency) is limited by the size of thmdow of

where N is the total number of estimates (number ofthe analyzed data (8s) and equals to 1/8*60 = PBB

windows).

Apart from zero-padding which is used here to mdate

These metrics are computed for each of the 2&e spectral envelope to other frequencies by dsorg the

recordings and the average performance acrosscssibge
reported.

3.HRESTIMATOR DESIGN

frequency spacing between neighboring DFT binsptiese
vocoder technique [18-20] is employed to refine ittigal
HR estimate through the estimation of the instesnas
frequency as the rate of change of phase angleat[22].
Phase changes between two consecutive frames etftade

The flowchart of the developed system (WFPV+VD) isdeviation of the true frequency from the bin fregeye Thus

shown in Fig. 1. The first 5 blocks are explainediétail in
[16] and are summarized here. The PPG and accedteom
signals are segmented to 8s windows with 2s dfltftred
with a 4th order Butterworth band-pass filter (@Hz) and
down-sampled from 125 to 25 Hz as shown in Fig).Z(be

PPG signals are then normalized to zero mean aitd un

variance and averaged. The signals are then sabjéztthe
DFT with the number of bins set to 1024. The conthat
corresponds to the HR between 60 BPM and 180 BPM
kept as shown in Fig. 2(b).

Wiener filtering [17] is applied to attenuate tHéeet of
MA in the PPG signal. The frequency-domain Wierikerf
is given as:

Pyy(N-PNn() _ Pxx(f)
Pyy(f) Pxx(f)+Pnn(f)

W) =

(4)

The noise spectrun®yy, is estimated by averaging the
spectrum of the 3 accelerometer signals. The cRBG
spectrum, Pyxx, can be estimated aBw(f) — Pun(f) or
recursively from previous filter outputs. Dependimg how
the power spectrum of the clean PPG signal is astith
two Wiener filters are implemented:

Pyn(tk
(k) =1 ; tNN( )
Xi Pyy(i
Ci+12i=t—C, "YY(ik)

1 - . .
& Zisi-c, w2 (LK)Pyy (i)

1 — . .
5 Zizi—c, W2 (WROPYy (LO+PNN (e

(5)

w,(t, k) =

(6)

the phases from thghosen peak in the magnitude spectrum
from the current and previous frames can be usedfioe
the initial frequency estimation:

Prew = (0, — 6, + 27‘[11)/(21T(t2 - tl)) (7)

where 6,, 0; are the two phases from the current and
rorevious frames, respectivelig, t; are the time stamps of
t%e two frames, here-t; is a windows shift and is equal to
2s,n is a positive integer. The values #f,, are computed
for severaln using Eq. 7, and the value @f., which is
closest to the initial peak is chosen as showrignZd).

The novel step proposed in this work performs post-
processing in a probabilistic framework using \iier
decoding [21]. The spectrogram of a cleaned PPGrdetw
(after Wiener filtering) is considered afNaby-T state-space
map of emission probabilities (likelihood$, for N states
(discrete values of HR as determined by the siz®eT)
andT observations (time windows), wheBgis a magnitude
value of thg" DFT bin for thet™ time window. An example
of emission probability matrix is shown in Fig. Bfar rec.
21. TheN-by-N matrix of transition probabilitiesh, where
A represents the probability of changing from itheiR to
the j'" HR, is estimated from the ground truth by counting
the transitions using the leave-one-recording-oatg@dure.

In this manner, the ground truth of the testingording is
never used but the ground truths of all other rdiogs are
used to estimate the transition probability matrixn
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Fig. 2. Signal transformation in the developed é#fRmation system. Plot (a) shows two PPG and thceelerometer signals after filtering; (b) shows
the spectral envelope and its maximum after the BFapplied to the PPG, (c) shows the processettrapenvelope and its maximum after MAs were

attenuated with Wiener filtering; (d) shows thelpaad the spectral envelop before and after thegkiacoder. Note that the instantaneous frequency
with the phase vocoder during HR estimation is categh only for the peak.

example of a log transition probability matrix iswalized
in Fig. 3(b). It can be seen that the variancehefttansition
probabilities increases with the increase of HR.

The Viterbi algorithm is then applied to recursivel
estimate the most likely path (the path with thghbist
cumulative log probability) through the time diminms t,
using emission and transition probability matridg&si:

Y.()) = argmaxlsiSN[5t—1(i)Aij], (8)
Whereé}(j) = maXlsiSN[(St_l(i)Aij]Bjt,2 <t<T,
1<j<N, andé6,(i) =m;B;;,1 <i <N, m, are the prior
probabilities.

After the recursion is computed the state sequémnce
backtracked as:

ir = argmax;<;<y[67 (D],
Iy = llut+1(it+1)'t =T-1T-2..1

The state sequence is converted to HR estimateshwhi
are then smoothed with a central moving averagger filf 4
estimates. The Viterbi decoding effectively perferpost-
processing in a threshold-free probabilistic manner

It is worth noting that the Viterbi decoding is éipd to
the grid of the DFT bin indices, whereas the phasoder
is used to adjust the frequency of each bin.

4. RESULTSAND DISCUSSION

Table | details the performance of the system. Ga t
database of 23 recordings, the system results avAR of
1.31 BPM withsdAE of 1.77 BPM.

Table | also shows the performance of the systea if
certain block from Fig. 1 is removed. This gives an
indication of the contribution of each system ciunent
towards the final performance. It can be seen whtitout
Wiener filtering (W/o WF in Table 1), the performam
degrades from 1.31 to 5.71 BPM. This result reprssa
HR estimation system that does not address MAsadsal
shows the effect of MAs in the database. Using &yl
the system results in avAE of 1.43 BPM, whereas using
only WF2 the system results in amAE of 1.46 BPM, to
compare with theavAE of 1.31 BPM using both filters
combined. A refinement introduced by the phase #eco
reduces the error from 1.47 to 1.31 BPM (W/o P\ able
). Finally, the system performance without Vitenbost-
processing (W/o VD) results in @&vAE of 5.86 BPM.

It can be seen that post-processing of HR estimsitio
has an effect on the performance, similar in sizethe
contribution of signal de-noising. The post-protegsteps
in approaches which were previously evaluated ersdme
dataset usually rely on a number of heuristic rudesl
thresholds [2, 8, 6, 10, 11, 14]. These rules dmdshold
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TABLE I.
PERFORMANCE OFHR ESTIMATION SYSTEM
WFPV+VD ON 23 PPGRECORDINGS

= WFPV+VD  W/o WF W/o PV W/o VD
o Al BVAE 131 571 147 5.86
< sdAE 1.77 7.16 1.81 9.10
[8)
g @ TABLE Il.
=3 COMPARISON OFHR ESTIMATION
o SYSTEMS ON22 PPGRECORDINGS
TROIKA JOSS SpaMa  SpectrapiWFPV+VD
avAE _ 2.73 2.08 2.01 1.79 1.24

(TROIKA, [2]); a method which jointly estimates the
spectrum of PPG and accelerometer signals usiognanon
sparsity constraint on the spectral coefficien@33, [8]); a
time-varying spectral filtering algorithm for recgiruction
of motion artifact (SpaMa, [13]), a HR estimatidgaithm
based on asymmetric least squares spectrum stibiractd
Bayesian decision theory (Spectrap, [14]). As it ba seen
from Table Il, the WFPV+VD system outperforms every
method on the database. It is worth mentioning tthaffirst
three methods perform online processing, whereast&p
is the only method that performs offline processivierbi
decoding in this work requires the spectrogramhefwhole
recording to be available beforehand.

The proposed algorithm takes under 10s to prodess t
whole PPG dataset of 23 recordings (Matlab R2013b @
Intel Core E7200 2.5GHz). This time compares fablyra
with other techniques published. It is reportedt tha

0 (b)

requency, BPM

I

Fig. 3. (a) Time-frequency state-space plane of DRagnitudes

considered as log emission probabilities, with siapgeosed ground
truth HRs in white. The output of Viterbi decodiig shown as a
dotted green line. (b) A matrix of estimated logansition
probabilities. Best viewed in colour.

process the first 12 PPG recordings TROIKA [2] 8MAT

[6] takes several hours, JOSS [8] takes 300s, EHMI)
takes 200s. The algorithm is well suited for fithéscking
and health monitoring in wearable devices [23].

The presented system with its superior accuracyaand
comparatively low computational cost can be usedHR
monitoring for swimmers or calculation of HR summnar
statistics. Both tasks require quick processing dmtnot

values are tuned and tested on the same data ariget
possible results are usually reported. In this reanthe
number of rules (degrees of freedom) is directikédid to an
improved performance but it comes at the cost of aRequire on-the-fly HR estimation.

increased risk of poor generalization on the unskta. It is For the purpose of reproducibility the Matlab

worth emphasizing that in this work the proposedtpo jmplementation along with the main results is aal

processing requires no thresholds and is performettie e (https://github.com/andtem2000/PPG)
well-established probabilistic framework.

Table 1l provides a comparison with other HR
estimation algorithms. Many developed systems tepor

results only on an ‘easier’ part of the datasee (irst 12 Thjs work proposed an alternative threshold-freep sto
PPG recordings) [6, 10, 11]. These PPGs are capturgyost-process HR estimates which were derived fr/@ At
during running on a treadmil. The recordings aessl \ya5 shown that HR estimate post-processing andomoti
corrupted with irregular MAs. Only a few techniqua®  artefact rejection had a commensurable effect oa th
evaluated on a more difficult part of the datatie¢ (ast 10 performance. Viterbi decoding was applied to spegram
recordings), in_ addition to the first 12_. This éplicated here _to find the path through time-frequency state-spaaae of
for comparative purposes (that is the WFPV+VD isyr estimates. Evaluated on a publicly availableskt the
evaluated on 22 recordings, rec. 13 is excludemidke the system resulted in an error of 1.37 BPM which
results comparable with other methods). These syste oyiperformed alternatives reported to-date. Theshpost-
include: a three-stage method which is based onakig processing requires no parameter to tune and dtaat

decomposition, sparsity-based high-resolution spett gystem operates at a much lower computational cost.
estimation, and spectral peak tracking and vetifica

5. CONCLUSIONS
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