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ABSTRACT

This paper presents a novel method that estimates human emotion
based on tensor-based supervised decision-level fusion (TS-DLF)
from multiple Brodmann areas (BAs). From multiple brain data
corresponding to these BAs captured by functional magnetic reso-
nance imaging (fMRI), our method performs general tensor discrim-
inant analysis (GTDA) to obtain features which can reflect the user’s
emotion. Furthermore, since the dimension of the obtained features
becomes lower, this can avoid overfitting in the following training
procedure of estimators. Next, by separately using the transformed
BA data obtained after GTDA, we obtain multiple estimation results
of the user’s emotion based on logistic tensor regression (LTR). Then
our method realizes the decision of the final result based on TS-DLF
from the multiple estimation results. This approach, i.e., the inte-
gration of the multiple BAs’ results for the whole-brain data, is the
biggest contribution of this paper. TS-DLF successfully integrates
the multiple estimation results with considering the performance of
the LTR-based estimator constructed for each BA. Experimental re-
sults show that our method outperforms state-of-the-art approaches,
and the effectiveness of our method can be confirmed.

Index Terms— Emotion estimation, functional magnetic res-
onance imaging, tensor dimensionality reduction, tensor decision-
level fusion

1. INTRODUCTION

Affect (e.g., moods or emotions) is the core of human nature and
behavior [1]. In the field of “affective computing” [2], studies on
estimation of moods or emotions from neuropsychological signals
such as functional magnetic resonance imaging (fMRI) data have
been intensively carried out. Furthermore, in recent years, machine
learning techniques have been increasingly used in the analysis of
fMRI data while users are watching images [3—-6]. Generally, the
small sample size problem occurs in fMRI data analysis [6-8], i.e.,
the dimensionality of whole-brain data is generally larger than the
number of observations. Typically, this problem results in overfitting
of training data, leading to high classification accuracy for the data
used in designing the classifier, but poor classification accuracy for
test data.

This paper presents a novel method for estimating human emo-
tion evoked by visual stimuli using fMRI data. In order to solve
the above problem, we perform division of the whole-brain data ac-
cording to the Brodmann areas (BAs) [9]. Each area is a region of
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the cerebral cortex, and the BAs were originally defined and num-
bered by Brodmann based on cytoarchitecture. In our method, gen-
eral tensor discriminant analysis (GTDA) [10] is applied to the data
obtained from each BA (BA data). GTDA takes the information re-
lated to users’ emotion into account and deals with tensor objects
such as fMRI data to provide the corresponding lower-dimensional
tensor for avoiding the risk of the overfitting. Next, we obtain a lo-
gistic tensor regression (LTR) [11]-based estimation result for each
BA. Since LTR can keep the intrinsic structural information in ten-
sor objects, it outperforms vector-based approaches such as support
vector machine (SVM) [12]. Finally, we integrate the LTR-based es-
timation results based on tensor-based supervised decision-level fu-
sion (TS-DLF), which can be derived by collaboratively using LTR
and the DLF proposed in [13]. The derivation of TS-DLF and the
integration of the multiple BAs’ estimation results for the whole-
brain data are the biggest contribution of this paper. The TS-DLF
successfully integrates the estimation results considering the accu-
racy of each LTR-based estimator. Consequently, the above non-
conventional fMRI data analysis realizes accurate emotion estima-
tion and outperforms state-of-the-art approaches.

2. NOTATIONS AND BASIC TENSOR ALGEBRA

This section shows notations and basic tensor algebra as prelimi-
naries since our method deals with tensor objects, i.e., fMRI data.
In this paper, vectors (1-order tensors) are denoted by lowercase
boldface letters, e.g., X, matrices (2-order tensors) by uppercase
boldface letters, e.g., X, and tensors (3-order or higher) by cal-
ligraphic letters, e.g., X. For instance, a K-order tensor is de-
noted as X € R2VXPPxxD® and it is addressed by K indices
dPk=1,2,...,K).

The k-mode product of a tensor X by a matrix U €
denoted by X x; U € RDXDDxexpre-xD®

The inner product is denoted by

(&) .
RPXD is

(X,Y) = vec(X) vec(Y), (1)

where the size of Y is the same as that of X, and vec(-) represents the
vectorization operator. From the unfolded tensor equivalents, Eq. (1)
can be rewritten as follows:

(X, Y) = r(XPY®T), )

where X® ¢ RP®X(DW--DEDDED--DB) 5 he k mode matricization
of X.
The Khatri-Rao (KR) product [14] of two matrices X € RO®
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Fig. 1. The brief overview of our method.

and Y € RP™ X 0Y € RP*P¥X s denoted as

XY Xi2Y.2 Xi,Y.

X2.1Y:,1 XZ,ZY:,Z X2,[Y:.1
XoY-= . . . >

XDX,IY:,l XDX,ZY:.Z XDX.IY:,I

TR

where “:” represents the full range of the corresponding index.

The CANDECOMP/PARAFAC (CP) decomposition [15, 16]
factorizes a K-order tensor X into a sum of R rank-one tensors as
follows:

R
r=1

[Tt

where the operator “o” represents outer product, and the factor matri-
ces are defined as V® = [vik), V(Zk), o v%‘)] € RP“*R_ From unfolded
tensors, the CP decomposition can be defined as

X® = V(k)(V(K) O---oVEYeovyEbag.. .o V(l))T
- V(k)V(*k)T’ 3)

where VO = VK 6.0 VD o VED g ..o VD e RIam PR,

3. TENSOR-BASED EMOTION ESTIMATION METHOD
FROM FMRI DATA

This section presents the proposed method that estimates human
emotion evoked by visual stimuli using fMRI data. The brief
overview of our method is shown in Fig. 1. Section 3.1 presents pre-
processing and masking procedures to obtain the multiple BA data.
In Sec. 3.2, we apply GTDA to the BA data and perform LTR-based
emotion estimation using the transformed BA data obtained after
GTDA. We then integrate the LTR-based estimation results con-
sidering their estimation accuracies based on TS-DLF in Sec. 3.3.

3.1. Preprocessing and Masking

This subsection presents the preprocessing and the masking proce-
dures applied to the whole-brain data captured by an MRI equipment
while users are watching images. Specifically, we adopt statistical
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parametric mapping' and wake forest university pick atlas [17, 18]
as the preprocessing and the masking procedures, respectively. Since
these procedures are not the main contribution of this paper, we only
show their brief explanation, below.

The preprocessing procedure consists of the following three
stages: realignment, spatial normalization and spatial smooth-
ing [19]. Realignment corrected target images for the translational
and rotational movements of the head. Next, in the spatial normal-
ization, each scan is matched to the template, called Montreal neu-
rological institute coordinates. Finally, the images were smoothed
with a Gaussian filter of 8 X 8 x 8 mm®.

The masking procedure consists of the following two stages:
generation of masks and calculation of the multiple BA data. In our
method, we generate the multiple masks corresponding to BAs and
take the product of the preprocessed whole-brain data by each mask
to obtain the BA data [17,18].

3.2. Single BA-based Emotion Estimation

; . Wy p@ 5 p®
Given a set of the training data of mth BA X;, € R”n>Pn>Pn
(i=12,...,N,m=1,2,...,M; N and M being the number of the
training data and the number of BAs, respectively), GTDA defines a

P . A k) k) i

multilinear transformation U% e RO *E PP < DY k=1,273)
that maps the original tensor space onto a lower-dimensional tensor
P PP o

m

subspace R
v rrl (12 E
Xi.m = Xi.m X1 UE,”) X2 Uin) X3 Ufn)'

Given the class labels of user’s emotion ¢; € {0, 1} corresponding
to “positive” (¢; = 1) and “negative” (¢; = 0), k-mode between-class
scatter matrix S%‘)m and within-class scatter matrix S(v.’;)m are calculated
as follows: ’ 7

S, = Y NeX®, = X)X, - XP)T,
}

cef0,1
N
k) _ (k) < (k) (k) T k) \T
SW,m - Z(Xi,m - XFi«"l)(Xi,m - Xc,.m) >

i=1

where

X® — i Z X(_k)
c,m N im?

¢ Vej=c

1 N
Tk _ L 2 : (k)
Xm - N g Xi,m’

and N, is the number of the training data belonging to cth class. The
objective function of GTDA is defined as follows:

A T A

U = argmax w (U (S5, = 7SI, )UY).

m

(k)

where ¢,’ equals to the maximum eigenvalue of (S® y-1gh

Wm Bm*
D@
Let Xyegm € RPnw>*PnxDn’ be a test data of mth BA. The lower-

. . . (D, p@) 503 . .
dimensional tensor Xy, € RFm P *Pu’ jg obtained by

v (1 72 AE
Xfest,m = lel,m X U,(n) X2 U;(n) X3 U(m)

Next, we explain the LTR-based emotion estimation using single
BA. The LTR model used in our method is shown in the following

Uhttp://www.fil.ion.ucl.ac.uk/spm/



equation:

1

Prc = 1 Xeorm: Wil = 5 ;
1+ exp(—( Wy, Xiestm))

(1)
where W,, € Rf» xPxP s parameter tensor of regression coeffi-
cients. For obtaining the optimal solution Wm of ‘W, the following
maximum log-likelihood problem is solved:

er =argmax L(W,),
W

where L(‘W,,) is the log-likelihood function with respect to mth BA
and defined as

N
LW,) = D el W,, i) + (1= enln(l = (W, i)

i=1

Since the regression coefficients ‘W, are constrained to be a sum of
R rank-one tensors by using CP decomposition, £(‘W,,) is rewritten
as follows:

L(W,) = LHUD, U2, UD).

m>~m>

The above optimization problem can be solved by a coordinate
descend approach of alternative projections in an iteration manner.
Concretely, we solve the parameter U at each iteration, while
keeping the other parameters {qu{)}/ 1jek fixed. From Egs. (2) and
(3), we can obtain Ufﬂ) which maximizes

N
L0 = 3 eln (rUL U X))
i=1

+ (1= cln (1 - r(UPULHTXET)) .

Note that X(k> is X(k) Uf,, D and tr(U(k)U( bt U‘)T) is equal to the in-

ner product of U and X(") Thus, since the following relationship
holds:

g ®T k (k)
tr(Ui,in,m )= vec(Ufn))Tvec(X‘..m),
we can vectorize the problem as

N
£L® (vec(U(n’j))) = Z ¢ln (vec(Uifj))Tvec(Xi.f;))
i=1
+ (1= cpin (1 = vee(UP) Tveo(X)) .

Finally, based on the idea of [11], we also add a regularization
term and estimate the optimal solution as

vec(ﬁ(k)) = arg max £L® (vec(U("))) ﬂllvec(Uff))Hl,
vee(USY)

where 4 > 0 is a tuning parameter, and || - ||; represents L;-norm.
Consequently, we obtain the estimation result y,,,, of human emo-
tion for mth BA following below:

nyA'tJn = arg max Pr[clxtmt,ma (Wm]~
ce{0,1}

In this way, we can estimate the class of user’s emotion. The prob-
lem, i.e., the overfitting problem, is reduced by dividing the whole-
brain data into multiple BA data (Sec. 3.1) and the tensor-based BA
data analysis approach shown in this subsection.
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3.3. Integration of Multiple Estimation Results via TS-DLF

In this subsection, we newly derive TS-DLF to integrate the multiple
estimation results obtained from each BA data. First, the estimation
model, i.e., the discriminating function, is specifically written as fol-
lows:

1

1+ exp(—(WPF R,.))

Pric = 1|X 0, WPLF] =

where X,y € RFPPxPY represents the lower-dimensional tensor
obtained by applying GTDA to the tensor with respect to cerebral
cortex, and WPLF ¢ RPPPxPY reprecents regression coefficients.
Next, the estimation sensitivity P*¢ and specificity P,/ are respec-
tively denoted as

P:;: = Pr[ytext,m = 1|C = 1]7 P:y{, = Pr[ytest.m = OlC = 0]

By using each BA’s estimation results y;,, and actual labels ¢;, we
respectively obtain each BA’s sensitivity and specificity as follows:
Pf: — Zf\il Ci¥im , P:”/, - Zl]\il(l - C[)(l - y[,m)’
Ziic ZiL(=e)

where y; , is obtained by the same manner shown in the previous sub-
section using a cross-validation scheme for the training dataset. By
using y;,, and X; € R” OxPxPY which is a transformed tensor ob-
tained after GTDA with respect to cerebral cortex, the log-likelihood
function of the regression coefficients WPLF of complete data is de-
noted as

N
LOWPT) = [ ] Prityinhy| K, WP,
i=1
By using a set of sensitivity and specificity, the above log-likelihood
function is rewritten as follows:

L((WDLF)
N
= [ [{Pritvunhiiile: = LAY - Prlci = 1R, WP

i=1

+ Prl{yimhs lei = 0, P11 - Pric; = 0K, WPH]).

m

We assume that each BA is independent each other, Pr[{y; ,,,}
1, {PscyM

1|Cl =
" Jand Pr({y;,}*_ |c; = 0,{P,’}*.,] can be rewritten as

M
Prllyealityles = LAPSL T = [ [Py - P,

m=1

Prl{yin bl = O, (PN ] = ]‘[[PW]‘

m=1

SP Vi,
Pm ] im

By solving the following maximum log-likelihood problem, the op-
timal solution ‘WPLF of WPLF can be obtained

PPLF = arg max L(WPLE),
y/DLF

Here, the above optimization problem can be solved in the same
manner as LTR (see reference [11] or Sec. 3.2).

Given a new test data, the probabilistic label y, is computed as



Table 1. The details of the parameters for fMRI observation.

Name [ Value
Repetition time (TR) 3000 msecs
Echo time (TE) 30.0 msecs
Flip angle (FA) 90°
Field of view (FoV) 192 mm?
Slice thickness (Thk) 3.0 mm
Slices 36 images
Matrix size / slice 94 x 94 pixels
Voxel size 2.0 x 2.0 X 3.0 mm

Table 2. Number of positive/negative images.

Positive | Negative
Subject A 15 25
Subject B 27 13
Subject C 18 22
Subject D 21 19
Subject E 20 20

follows:
MHe = Pr[cl{ymxr,m}%:l s Xiests (WDLF]
o Pr[{ytest,m}le e, WDLF] - PrlclX est, WDLF]
:c‘~7p+(1—c')~6(l—p)’ )
yp+6(1-p)
where

p = Pr(c|X s, WP,

M
y= l_l[PIS:])'MH,m[l _ Pf:]lj"”"",

m=1

M
5= 1_[[ Plsnp]l’}’le.sl.m[ 1= Pf’f)])'mu,m‘

m=1

Finally, we can obtain the final estimation result J,., as
Viess = arg max fe,
YViest gce(o,l)'uc

and successfully realizes the collaborative use of the multiple BA
data.

The overfitting problem is solved by dividing whole-brain data
into the multiple BA data and integrating of the LTR-based estima-
tion results. Moreover, TS-DLF can consider the LTR-based esti-
mators’ sensitivity and specificity shown in Eq. (4) to accurately
integrate these estimation results.

4. EXPERIMENTAL RESULTS

This section presents the experimental results to verify the effective-
ness of our method. First, we explain an image dataset used for the
visual stimuli. In this experiment, we utilized Affective Image Clas-
sification Dataset [20]. This dataset consists of 807 images, and
each image has one of the eight emotional categories. Specifically,
these categories are Amusement, Awe, Contentment, Excitement as
“positive” emotions and Anger, Disgust, Fear, Sad as “negative”
emotions. We randomly selected five images for each of the eight
categories and used total 40 images as the image dataset.
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Table 3. Accuracy of the estimated emotion.

Comp. 1[6] | Comp. 2 | Comp. 3 | Ours

Subject A 0.450 0.463 0.613 0.619
Subject B 0.525 0.444 0.525 0.594
Subject C 0.600 0.600 0.625 0.644
Subject D 0.475 0.638 0.744 0.713
Subject E 0.600 0.681 0.638 0.669
Avg. 0.530 0.565 0.629 0.648

Std. 0.069 0.106 0.078 0.046

Table 4. Relationship between comparative methods and our

method. “DR” represents dimensionality reduction.

Comp. 1 [6] Comp. 2 Comp. 3 Ours
fMRI data || whole-brain | whole-brain BA BA
DR MPCA GTDA MPCA | GTDA
Estimator MI+SVM LTR LTR LTR
TS-DLF X X v v

In this experiment, five healthy subjects, named Subject A, Sub-
ject B, ..., Subject E (average 26 years old) participated. The fMRI
data were captured with the 3T MRI scanner (Siemens MAGNE-
TOM Prisma?). Table 1 shows the parameters for the fMRI obser-
vation. We dealt with block design (task: watching an image for 12
secs, rest: resting-state for 12 secs). Since we obtained 4 samples per
block, the number of the obtained fMRI data were 160 (= 40 x 4).
Furthermore, all subjects evaluated each image by an emotional cat-
egory that fall under any of the eight categories, and the categories
were grouped into the two classes, i.e., “positive” (¢ = 1) and “neg-
ative” (¢ = 0). In this experiment, these classes were used as the
ground truth, and Table 2 shows the number of positive and negative
images with respect to each subject. The verification method was
five fold cross-validation.

Results of our experiment are shown in Table 3. In this table, we
also show the results of three comparative methods shown in Table 4.
The improvement of the estimation accuracy for most subjects and
the average can be confirmed by the results in Table 3. The results
of Comp. 2 and Ours show the effectiveness of obtaining multiple
BA data and integration of these estimation results. The results of
Comp. 3 and Ours show the effectiveness of applying supervised ten-
sor dimensionality reduction, GTDA. Moreover, Ours outperforms
the state-of-the-art approach [6], i.e., Comp. 1, that applies mul-
tilinear principal component analysis (MPCA) [21] to whole-brain
data, feature selection based on mutual information (MI) and SVM-
based estimation. Therefore, the results show the effectiveness of
our method.

5. CONCLUSION

In this paper, we have presented a novel method for estimating hu-
man emotion evoked by visual stimuli using fMRI data. We divide
whole-brain fMRI data according to the BAs, and then apply GTDA
and LTR to the BA data. These procedures solve the problem of the
overfitting. Finally, the integration of the multiple estimation results
based on TS-DLF enables the collaborative use of the multiple BAs’
results. Consequently, our method has realized the improvement of
the estimation performance.

2http://www.siemens.com/
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