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ABSTRACT

Brain decoding has become a hot topic in many recent brain
studies. In a typical neuroimaging experiment, participants
are presented with different categories of stimuli while their
concurrent brain activity is recorded. Then a classifier is
trained on the features extracted from the recorded brain
data to discriminate different target stimuli classes. It is a
common practice to hypothesize that the stimulus-related
information exists in the brain data if the decoder can accu-
rately predict the target stimulus category. However, most of
the neuroimaging studies suffer from few and noisy samples.
These constraints affects the performance of such decoding
systems. In order to cope with this limitation, a dictionary
learning approach is used in this paper to transfer knowledge
from the multimedia domain to the brain domain. We show
that such cross-modal domain adaptation yields better perfor-
mance of the learning algorithm in the brain domain. This is
the first study in the direction of cross-modal adaptation by
joint dictionary learning on multimedia and brain modality.

Index Terms— brain decoding, signal processing, multi-
media information retrieval, domain adaptation, genre classi-
fication

1. INTRODUCTION

Brain Computer Interface (BCI) has recently become a hot
topic outside neuroscience and rehabilitation communities.
Other disciplines such as artificial intelligence have already
started to contribute to the field by bringing into play ma-
chine learning and signal processing algorithms to brain data.
Recent progress in brain studies demonstrates the possibil-
ity of brain decoding, which is typically a classification of
stimuli into a set of categories. In a typical brain decoding
paradigm, experimental participants are presented by differ-
ent categories of stimuli while their brain activity is simulta-
neously being recorded. Then a machine learning algorithm
is employed to categorize the features extracted from the mea-
sured signal into the target stimuli classes [1, 2, 3, 4, 5, 6].

However, recording brain data is very costly resulting in
very few samples. Additionally, the recordings are very noisy
due to the low signal-to-noise ratio and the non-stationarity
nature of the signals. These two constraints lead to a sud-
den drop in the performance of machine learning algorithms.

For example, in [7, 8], authors show the possibility of music
and movie genre classification using brain signals but they ob-
tained better results on the same dataset when low-level mul-
timedia features were used instead of brain features.

Most of the machine learning approaches work well when
being trained and tested in one specific domain. They may
however fail when applied to another domain, i.e., the distri-
bution changes, which is the case in many real world applica-
tions. In such cases, transferring knowledge across domains
and tasks would be desirable. This is the situation where the
performance in the target domain depends on the performance
in the source domain and the similarity between the source
and the target domain. Transfer learning can be very benefi-
cial in the cases where collecting data is immensely difficult
and costly [9, 10]. Such situations emerge often in the neu-
roimaging studies.

Sparse dictionary learning is one of the most widely used
approaches for domain adaptation where the goal is finding
sparse representations to minimize domain divergence and
model error. The strategies to find these representations are
dataset dependent and can be supervised or unsupervised (if
there is no label information) [9]. Prior works in neuroimag-
ing studies have shown that low-level audio-visual features
such as orientation, direction of motion and color of visual
stimulus are encoded in the human brain[11, 12, 13]. Some of
these low-level audio-visual features were used also in multi-
media retrieval literature for specific tasks (e.g,. genre classi-
fication [14, 15]). Inspired by these facts, in this paper, we ad-
dress the specific problem of cross-modal adaptation by learn-
ing jointly a sparse dictionary on the low-level audio-visual
features and brain features. We are the first showing that
such cross-modal adaptation is feasible between multimedia
and brain features. The method has been tested on two neu-
roimaging datasets: DECAF dataset [16] and DEAP dataset
[17]. These datasets contain the magnetoencephalography
(MEG) and electroencephalography (EEG) data of subjects
who watched music/movie clips and they have been used pre-
viously by [7, 8] regarding music/movie genre classification.
Motivated by recent successes in domain adaptation in ma-
chine learning literature [18, 19, 20, 21], we hypothesize that
brain/multimedia adaptation can be done successfully and our
evaluation confirms that such adaptation shows a significant
performance gain. Figure 1 illustrates the overview of the
framework proposed in this study.
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Fig. 1. Overview of our proposed framework: During training, a dictionary learning approach is used to learn a mapping
function for brain/multimedia adaptation. Once the mapping function is learned, the genre of a test movie clip is predicted
using the adapted brain features.

The remainder of this paper is structured as follows: In
section 2 we present our experimental setup including the
dataset, feature extraction steps and our adaptation procedure.
Section 3 elaborates our experimental results with a brief dis-
cussion. And finally section 4 concludes the paper and high-
lights some future directions.

2. MATERIALS AND METHOD

In this section, we describe the used datasets, feature extrac-
tion scheme, and the adaptation procedure.

2.1. Datasets

In this study, we employed two publicly available neuoroimag-
ing cross-modal datasets.

DEAP dataset1: This dataset contains the electroencephalo-
graphic (EEG) data of 32 participants as each watched 40 mu-
sic video clips. These music video clips were projected onto a
screen at a screen refresh rate of 60 Hz that was located about
a meter in front of the subject. The electroencephalographic
data were recorded using a 32 channel Biosemi ActiveTwo
system at a sampling rate of 512 Hz.

DECAF dataset2: This dataset contains the magnetoen-
cephalographic (MEG) data of 30 participants as each watched
36 movie clips and 40 music video clips. These clips were
projected (20 frames/second) onto a screen located about a
meter in front of the subject inside the acquisition room. The

1http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
2http://mhug.disi.unitn.it/wp-content/DECAF/

DECAF.html

MEG data were recorded using a 306 channel Electa Neuro-
mag device (102 magnetometers and 204 gradiometers) with
1KHz sampling rate in a magnetically shielded room with
controlled illumination.

We specifically selected these two datasets in this study
because, for each music/movie clip, the corresponding brain
features (i.e. MEG features and EEG features) and multime-
dia features can be extracted.

2.2. Annotation

Music genres: Each music clip (in both datasets) is labeled
with one of the following two broad genres: Pop or Rock (see
[8] for the details of genre annotation). Note that the music
video clips used in the DECAF dataset are the same clips
used in the DEAP dataset.

Movie genres: Each movie clip is assigned with a label out
of the following four genres: Comedy, Romantic, Drama and
Horror (see [7] for more details on genre annotation).

2.3. Source Domain: Multimedia Features

Following [16, 7], for each music/movie clip, the low-level
audio-visual features are extracted. These low-level Multi-
media Content Analysis (MCA) features include 49 video fea-
tures and 56 audio features (see table 1). These MCA features
are extracted for each second of the movie clips and then they
were averaged by the length of the clip.

2.4. Target Domain: Brain Features

MEG Features: Following [7], the MEG data is processed as
follows:
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Table 1. Extracted MCA features for each music/movie clip
(the number of features is listed in the parenthesis).

Audio features Video features
MFCC features (13) Motion (1)

Derivative of MFCC features (13) Visual Excitement (1)
AMFCC features (13) Visual Details (1)

Energy (1) Color Variance (1)
Pitch (1) Lighting Key (1)

Zero crossing rate (1) Shadow Proportion (1)
Silence ratio (2) Grayness (1)

Formants (4) Saturation for frames (1)
MSpectrum flux (2) Lightness for frames (1)
Spectral centroid (2) Lightness (20)

Delta spectrum magnitud (2) Hue (20)
Band energy ratio (2)

56 Audio features 49 Video features

1. Down-sampling the MEG signal to 300 Hz.
2. Bandpass frequency filtering (1 - 95 Hz).
3. Estimating the spectral power of the 102 combined-

gradiometer sensors of each trial with a window size
of 300 samples.

4. Calculating MEG features by averaging the signal
power over time and over four frequency bands: theta
(3:7 Hz), alpha (8:15 Hz), beta (16:31 Hz) and gamma
(32:45 Hz). The output of this procedure for each trial
is a matrix with the following dimensions: 102 (num-
ber of the MEG sensors) × 4 (frequency bands).

EEG Features: We used the same pre-processed EEG data
as in [17]. These pre-processing steps are as follows:

1. Down-sampling the EEG signal to 128 Hz.
2. EOG artifacts removal.
3. Bandpass frequency filtering (1 - 45 Hz).
4. Estimating the spectral power of each channel of the

EEG trials with a window size of 128 samples.
5. Calculating EEG features by averaging the signal

power over time and over four frequency bands: theta
(3:7 Hz), alpha (8:15 Hz), beta (16:31 Hz) and gamma
(32:45 Hz). The output of this procedure for each trial
is a matrix with the following dimensions: 32 (number
of the EEG sensors) × 4 (frequency bands).

2.5. Domain Adaptation

To benefit sparsity-inducing properties, we first sparsify the
features in both modalities. Once sparse representations are
obtained, we adopted the Semi-Coupled Dictionary Learning
(SCDL) approach [22] in order to adapt the sparse MCA fea-
tures to the sparse brain features. This was done for each sub-
ject separately. We refer to these features as Adapted-Brain
features.

The intuition behind such cross-modal adaptation is that a
mapping function can be found to associate the given sample
in the brain domain to the corresponding sample in the mul-
timedia domain. Since each pair of samples in two modal-
ities refer to the same video clip, it is reasonable to assume
that there exists a hidden space where the knowledge can be
transferred across the two modalities. Therefore, we employ a
coupled dictionary learning method with the assumption that
there exists a dictionary pair over which the representations
of two modalities have a stable mapping. Once the dictionary
pair and mapping are learned, cross-modal domain adaptation
can be performed.

We denote X and Y as source and target domain feature
matrix, respectively. Dx and Dy are the dictionaries learned
in the source and the target domain. Λx and Λy are the codes
learned in the source and the target domain. We propose to
optimize the following objective function below:

min(Dx,Dy,W)‖X−DxΛx‖2F + ‖Y −DyΛy‖2F
+γ‖Λy −WΛx‖2F + λx‖Λx‖1 + λy‖Λy‖1 + λw‖W‖2F

s.t. ‖dx,i‖l2 ≤ 1, ‖dy,i‖l2 ≤ 1, ∀i
(1)

where γ, λx, λy , λW are regularization parameters to bal-
ance the terms in the objective function. The objective func-
tion in (1) is not jointly convex to Dx, Dy, W. However, it is
convex w.r.t. each of them if others are fixed. An iterative
algorithm is designed to alternatively optimize the variables.

3. EXPERIMENTS AND RESULTS

For the sake of compatibility with [7, 8], we employed the
same classifiers under the leave-one-clip-out cross-validation
schema to classify brain features (Brain features and Adapted-
Brain features) into the target genre classes. Such evalua-
tion, provides us with comparing brain features before and af-
ter adaptation. The above-mentioned pipeline was performed
in the two following scenarios: Subject-level analysis and
Population-level analysis.

3.1. Subject-level analysis

3.1.1. movie genre classification

Following [7], at subject level, the Naive Bayes classifier
was employed on the brain data of each subject separately.
Then, the average accuracy of all subjects using MEG fea-
tures (Brain) and Adapted-MEG features (Adapted-Brain)
are obtained. The results of such analysis is demonstrated
in Figure 2 (DECAF-MOVIE). The significant difference
(p − value = 0.0038) between the average accuracy of
Adapted-MEG features (0.42 ± 0.05) and MEG features
(0.36 ± 0.11) suggests the efficacy of adapting the brain
domain to the multimedia domain.
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Besides genre, we also adopt our classifier to classify
movie clips using their affective labels provided in [16].
Table2 shows the average accuracy of all subjects using
MEG features and Adapted-MEG features. The result of the
Adapted-MEG features is significantly (p− value = 0.0224)
better than the MEG features.
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Fig. 2. Comparison between the accuracy of Brain and
Adapted-Brain features in classifying the genre of the mu-
sic/movie clip in the single-subject level scenario on different
datasets.

3.1.2. music genre classification

Following [8], at the subject level, A Linear SVM classifier
was employed on the brain data for each subject separately in
both DECAF and DEAP datasets. Figure 2 (DECAF-MUSIC
and DEAP-MUSIC) compares the results of music genre
classification using brain features (MEG and EEG) before
and after adaptation. In both DECAF and DEAP datasets,
the distribution of the obtained classification accuracies using
Adapted-Brain features is far superior to Brain features. This
difference implies the effectiveness of adapting brain do-
main to multimedia domain. In the case of DECAF-MUSIC
dataset, this difference is significant (p− value < 0.001).

Table 2. Comparison between the accuracy of MEG and
Adapted-MEG features in classifying the affective content in
the single-subject level scenario.

Feature-Space Affective Content (valence) Accuracy
MEG 0.55 ± 0.10

Adapted-MEG 0.61 ± 0.08

3.2. Population-level analysis

To evaluate the efficacy of the Adapted-Brain features at the
population level, the genre of each music/movie clip is com-
puted by majority voting over the predicted labels of single-
subject predictions across all subjects.

The results are summarized in Table 3. In case of movie
genre classification (DECAF-MOVIE), the population level
accuracy for Adapted-MEG features is 63.9% which is higher
than the accuracy of MEG features (55.6%). In case of music
genre classification using MEG signals (DECAF-MUSIC),
the population level accuracy for Adapted-MEG features is
65% and this is also higher than the accuracy of MEG fea-
tures (57.5%). However, in the case of music genre classifi-
cation using EEG signals (DECAF-MUSIC), the population
level accuracy for Adapted-EEG features is 62.5% which is
below the accuracy of EEG features (75%). Considering the
higher accuracy of the Adapted-EEG features in the Subject-
Level analysis, this phenomena is probably due to the low
agreement between the predictions of all subjects.

Table 3. Comparison between the accuracy of Brain features
and Adapted-Brain features in the population-level analysis.

Dataset Feature-Space Accuracy

DECAF-MOVIE MEG [7] 55.6%
Adapted-MEG 63.9%

DECAF-MUSIC MEG [8] 57.5%
Adapted-MEG 65%

DEAP-MUSIC EEG [8] 75%
Adapted-EEG 62.5%

4. CONCLUSIONS

In this paper, we applied a dictionary learning approach for
the brain/multimedia adaptation. Despite the difference be-
tween these two modalities, our adaptation procedure outper-
formed the previous state of the art of the movie/music genre
classification task (using brain signals). We evaluated our ap-
proach on two different neuroimaging modalities (MEG and
EEG) and our cross-modal domain adaptation approach led
to improved results in both of them. We believe that such
approaches can overcome the limitations of the neuroimag-
ing studies (namely, few and noisy samples) and consequently
boost the performance of the decoding algorithms. As future
work, we will explore such adaptation procedure by employ-
ing other neuroimaging modalities (e.g. fMRI) on other tasks
(e.g. Action Recognition) .
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