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ABSTRACT

In this study we investigate whether or not event-related
(de)synchronisation (ERD/ERS) can be used to differenti-
ate between 27 healthy elderly, 21 subjects diagnosed with
amnestic mild cognitive impairment (aMCI) and 16 mild
Alzheimer’s disease (AD) patients. Using 32-channel EEG
recordings, we measured ERD responses to a three-level vi-
sual N-back task (N = 0, 1, 2) on the well-known delta,
theta, alpha, beta and gamma bands. Our findings revealed
that healthy elderly (HE) elicited consistently greater beta
and alpha ERD responses than MCI and AD patients at many
scalp electrodes, most of them located at fronto-central and
temporal-parietal areas. Additionally, significant ERD dif-
ferences were found on the gamma band in the MCI vs. AD
comparison. Based on these findings, we conclude that ERD
responses to a working memory (N-back) task could be useful
for early MCI diagnosis or for improved AD diagnosis, and
also for assessing the likelihood of MCI progression to AD.

Index Terms— working memory,
event-related (de)synchronisation,
mild cognitive impairment, Alzheimer’s disease

1. INTRODUCTION

Amnestic mild cognitive impairment (aMCI) has been shown
to be an important risk factor in the development of Alzheimer’s
disease (AD) [1]. Recent statistics show that about 50% of all
people who reported aMCI symptoms to a doctor will develop
AD within four years, with an average annual conversion rate
of 12% [2]. Over the last few years, neuroimaging has gained
significant grounds in helping characterize MCI and AD, us-
ing resting-awake experimental protocols to investigate the
so-called “default mode network” (DMN) [3] as well as other
protocols designed to capture task-related brain activity[4].
Functional magnetic resonance imaging (fMRI), for instance,
has shown that hippocampal atrophy is a reliable indicator of
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aMCI and its conversion to AD [5]. Hippocampal atrophy,
however, represents a relative late stage of neural dysfunc-
tion, one where cell loss has already manifested. In contrast,
salient measures extracted from the electroencephalogram
(EEG) which reflects the electrical activity of neural tissue
may be better suited to reveal functional impairment long
before actual tissue loss occurs, thus opening doors for very
early diagnostics. Indeed, EEG sub-band analysis and cross-
frequency interactions have revealed discriminative patterns
between healthy controls, MCI, and AD patients in resting-
awake EEG data [6]. Similarly, EEG amplitude modulation
analysis has been shown to be useful in characterizing AD
progression from mild to moderate stages [7, 8].

While resting-awake protocols have shown to be useful in
diagnostics, this study explores the use of EEG analysis dur-
ing an executive function test, as deficits in such tasks have
been shown to be prevalent in MCI [9]. To this end, event-
related potential (ERP) analysis has been explored [10, 11],
with some success in discriminating between healthy con-
trols, MCI, MCI-Progression-to-AD, and AD. ERP analysis,
however, discards sub-band information that has been shown
to be invaluable with resting-awake EEG [12]. In this pa-
per, we overcome this full-band analysis limitation by using
an alternate analysis technique called sub-band event-related
(de)synchronization (ERD/ERS) [13], in response to working
memory N-back tasks [14].

2. MATERIALS AND METHODS

2.1. Participants

Sixty four volunteers were enrolled in the study. Of these par-
ticipants, 27 were healthy elderly (HE), 21 were diagnosed
with mild cognitive impairment (MCI) and 16 with probable
Alzheimer’s disease (AD). Patients (participants with MCI
and AD) were recruited and diagnosed at the Memory Clinic
of the Sir Mortimer B. Davis-Jewish General Hospital (JGH),
in Montreal, which is a tertiary care referral center of McGill
University. Healthy elderly controls (HE) were recruited from
research participation databases at Concordia University and
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the Memory Clinic at the JGH. Ethics approval was obtained
from Concordia University as well as the Jewish General Hos-
pital. All 64 recruited participants provided written consent.

Healthy elderly (HE) were selected after undergoing a re-
view of its overall cognitive function, made through the Mon-
treal Cognitive Assessment test - MoCA [15], which is a cog-
nitive screening tool sensitive to detect MCI. Subjects were
excluded from the HE group if they score under 26 on this
measure. Mild cognitive impairment diagnosis was made ac-
cording to agreed-upon criteria [16], which included a subjec-
tive report about the cognitive decline (made by the individ-
ual or his/her family); it should be gradual and lasting at least
six months. In addition, objective verification of cognitive
impairment was performed by neuropsychological tests (i.e.,
1.5 SD of appropriate standards for age) to assure the absence
of significant impairment in activities of daily life and failure
to meet the ADRDA-NINCDS criteria for dementia [17], as
determined by the assessing physician in the Memory Clinic.
All patients were diagnosed as amnestic MCI, demonstrat-
ing a deficiency in episodic memory measures. Diagnosis of
AD was based on ADRDA-NINCDS criteria for probable AD
[17], which includes a established progressive cognitive de-
cline and the absence of any other condition capable of pro-
ducing a dementia syndrome. Only participants who were
competent to sign the consent form, without assistance, were
included in the AD group. Thus, all patients with AD who
participated in the study had a mild degree of the disease.

2.2. N-back task description

All subjects were submitted to a three-level visual N-back task
(N = 0, 1, 2) [18]. N-back are working memory (WM) tasks
with increasing levels of memory load, where the participant
has to indicate with a button press whether the current visual
stimulus displayed on a screen (here, a digit from one to nine),
is the same or different from (a) a digit they have been asked
to remember (0-back), (b) the digit they saw in the previous
trial (1-back) or (c) the digit they saw 2 trials previously (2-
back). Any given trial is termed a “match” or a “non-match”
trial, based on whether or not it matches the digit presented
N trials previously (or the target digit in the 0-back case),
respectively.

Single digits (1-9) were presented sequentially on a com-
puter screen in white letters on a black background (Arial font
point 150). Three levels of N-back task were completed in
ascending WM load (0-back, 1-back, 2-back). Each condi-
tion consisted of 100 trials, 40% of which were match tri-
als (match vs. non-match stimuli were distributed pseudo-
randomly). Each digit was presented an equal number of
times, in a pseudo-random order (limited by the demands of
our 40/60 ratio for match/non-match). The stimuli were pre-
sented during 600 ms, with an inter-stimulus interval of 1,400
ms. Participants responded by pressing the left or right button
on a keyboard with the index finger of each hand.

2.3. EEG signals recording and pre-processing

Electroencephalography signals were recorded using a 32-
channel Neuroscan device with 500 Hz sampling rate and
following the international 10-20 placement system; the 32
Ag/AgCl electrodes were mounted in an elastic Easycap and
impedance was kept below 8 kΩ. The reference electrode
was placed in the left earlobe during EEG recording, but for
offline analysis all signals were re-referenced to the average
of the left and right ear electrodes. From the 32 channels
available, two were reserved for monitoring vertical (blinks)
and horizontal (saccades) eyeball movements, and a third was
attached to the right earlobe and used as an additional refer-
ence, as mentioned before, thus resulting in 29 useful EEG
channels. Recorded data were then lowpass filtered (57 Hz),
downsampled to 125 Hz, and further highpass filtered (1.2
Hz) to eliminate drifting effects. Next, eye blinks, saccades,
heart beats and other muscular as well as electrode artifacts
were removed using the Independent Component Analysis
tool of the EEGLAB software[19]. To allow for frequency-
specific EEG analysis, the full-band EEG signals were then
decomposed into four well-known sub-bands, namely: theta
(4− 8 Hz), alpha (8− 12 Hz), beta (12− 30 Hz) and gamma
(30 − 45 Hz). Sub-band signals were then segmented into 2-
seconds epochs ranging from -500 ms to 1500 ms, where 0 ms
indicates the instant when the visual stimulus was presented
to participants.

2.4. Signal processing for ERD/ERS quantification

Event-related cortical synchronization (ERS) and desynchro-
nization (ERD) relate to the increase (or decrease) in firing
synchrony of neurons involved in frequency-specific event-
related processes, respectively. According to Pfurtscheller,
“ERD characterizes cortical areas involved in task-relevant
processing and ERS marks cortical areas in an idling state”
[20]. In order to quantify ERS/ERD patterns, a procedure
similar to the one described in [20] was performed. First,
for each of the four sub-band signals, the sample ampli-
tudes were squared to obtain energy signals, which were then
passed through a 100ms-length moving average filter to gen-
erate the smoothed bandpass energy signals E(t). After filter
delay correction, the pre-stimulus reference (average energy
from -500 to 0 ms) of the smoothed bandpass energy signals
(termed R) were computed. Lastly, the percentage power
decrease (%ERD) or increase (%ERS) were computed as

%ERD(t) = 100× E(t)−R
P

, (1)

where P indicates average energy of the entire epoch (i.e.,
from -500 to 1500 ms). So, when %ERD(t) is negative it
means power decrease, otherwise it means the power has in-
creased as compared to the baseline. The main difference be-
tween Eq. 1 and the one used in [20] lies in the normalizing
factor, where we use P in lieu of R. In our experiments, we
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found that this normalization procedure was more robust to
inter-subject EEG signal power variations. Throughout our
analyses, the so-called “cumulative ERS/ERDs” were used
and computed as the sum of the ERS/ERD signal samples
%ERD(t) over 150 ms intervals with 75 ms overlapp, from
75 ms to 1300 ms post-stimulus. This variable was used in-
stead of directly comparing the %ERD(t) signal samples in
order to reduce both data variability and size. The notation
ERD% will be used from now on to denote those “cumula-
tive ERS/ERDs”.

2.5. Statistical Analysis

Statistical significance was established at 5% level for all
tests. As the ERD/ERS patterns usually do not follow a
normal probability distribution, the non-parametric Kruskal-
Wallis test was applied followed by Bonferroni post-hoc tests
for multiple comparisons correction. In order to properly
assess statistically significant differences between groups,
multiple comparisons were performed over all five EEG
channels belonging to the Region of Interest (ROI). For each
sub-band and 150 ms interval, we defined as ROI the top-five
scalp locations where ERD% “distances” between groups
were the greater ones, according to a variation of the Maha-
lanobis distance for univariate and non-parametric statistical
testing, which we developed specifically for this study and is
given by

D(G1, G2) =
|Med(G1)−Med(G2)|

√
σ1σ2

, (2)

where Med(G1) and Med(G2) are the ERD% medians of
groups 1 and 2, respectively, while σ1 and σ2 are the corre-
sponding standard deviations. Herein, groups 1 or 2 denote
whichever two groups (HE, MCI or AD) being compared.

3. RESULTS

To avoid misjudgment issues, we only analyzed the ERD/ERS
responses where the participant provided the correct answers
for both match and non-match trials. Table 1 lists all signif-
icant differences found in the “match” (M) and “non-match”
(N) trials for the HE vs. MCI, HE vs. AD and MCI vs. AD
post-hoc comparisons, when participants performed the three-
level N-back task. Most differences were encountered in the
HE vs. MCI comparison, the majority of them on beta sub-
band in the M1-back and N0-back conditions and some on
alpha band in the M2-back trials. Interestingly, no differences
in ERD% for any comparisons occurred when participants
were making the 0-back matched decisions. Regarding the
HE vs. AD comparison, in turn, three ERD% differences
were found: one on the alpha sub-band, at electrode C3, other
on gamma band at scalp location F4 (both in M2-back trials)
and the last one was found on gamma at Fz (N1-back task).
As for findings related to the MCI vs. AD comparison, we

Fig. 1. ERS/ERD grand average on gamma at Fz (N0-back
task). The interval with significant ERD% difference be-
tween MCI and AD is highlighted in yellow.

Fig. 2. Grand average of the %ERD(t) response on alpha
band at TP7 (M2-back task, HE vs. MCI comparison).

relied only in “non-match” trials (N0-back), where just two
differences were found, and both on gamma band at Fz. Fi-
nally, no significant differences in all post-hoc comparisons
were found for delta and theta bands across the 3-level task
situations, for both match and non-match trials.

In Fig. 1 we show a representative grand average (across
all subjects) ERS/ERD pattern observed on the gamma sub-
band at frontal electrode Fz, where significant ERD% dif-
ferences (highlighted in yellow) were observed for the MCI
vs. AD post-hoc comparison (0-back non-match task). Fig.
2, at temporal-parietal electrode TP7, shows a significant HE
vs. MCI difference on the alpha sub-band when participants
were performing the 2-back match task.
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Table 1. Frequency sub-bands, time intervals and electrode locations where we foundERS% differences (negative percentages
indicate ERD) in the post-hoc group comparisons for matched (M) and non-matched (N) conditions with participants performing
the 0,1,2-back task levels.

Task Sub-band Interval (ms) Electrode HE ERS% MCI ERS% AD ERS%

M1-back beta 150-300 CP3 -62.0 -19.7
225-375 P3 -58.0 -30.0
450-600 TP8 -51.0 -18.8
450-600 P4 -65.0 -28.1

gamma 375-525 FZ 3.0 -22.7
M2-back alpha 150-300 TP7 -40.8 24.4

225-375 T5 -68.9 -12.7
225-375 C3 -70.9 -22.0

gamma 525-675 F4 8.7 -31.4
N0-back beta 375-525 C4 -57.2 -34.8

750-900 C4 -20.4 1.7
825-975 CP4 -15.6 5.3
825-975 C4 -20.6 6.9

gamma 75-225 FZ -0.3 -16.9
150-300 FZ 0.3 -23.1

N1-back gamma 150-300 FZ -2.9 -22.5
N2-back beta 975-1125 TP8 -21.8 22.7

4. DISCUSSION

It has been shown in the literature that alpha band rhythm
over broad scalp regions presents desynchronization (ERD)
in judgement and memory tasks [21]. More recently, some
studies found out that ERDs on different frequency bands are
induced in some attention and memory tasks, thus leading us
to believe that such ERDs could be related to a broader range
of cognitive processes[22, 23]. Our results (Table 1) corrob-
orate such findings. Furthermore, it has also been previously
reported that an increase in task complexity and/or attention
results in greater ERD magnitudes [24], an effect also ob-
served in this study, thus further confirming the relationship
between ERD and cognitive load. In this work, consistent
event-related desynchronization was observed on alpha and
mainly on beta, across several N-back task levels/types and
scalp regions. More specifically, both the MCI and AD groups
showed a consistent lowering (i.e., less negativity) of ERD%
relative to the HE group at many scalp electrodes, chiefly at
fronto-central and temporal-parietal areas.

Although more tests over larger databases are needed to
further validate our findings, we conclude that ERS/ERD re-
sponses to working memory (visual N-back) tasks could be
useful not only for early MCI diagnosis or for improved AD
diagnosis, but also for assessing the likelihood of MCI pro-
gression to AD.
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