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ABSTRACT

Repetitive visual stimuli induce periodic Visual Evoked Po-
tentials (VEPs) in the brain that can be potentially identified
in an EEG trace. The ability to distinguish frequencies and
patterns due to different stimuli is the basis for brain com-
puter interfaces (BCIs) used for communication and control
of neurologically disabled patients. Since such responses are
recorded in presence of high levels of noise from background
brain processes, the detection task is rather challenging. In
this work, we propose a detection approach for VEPs based
on Ramanujan Periodicity Transform matrices (RPT), which
have shown promise in detecting periodicities in data. Our re-
sults show that the RPT-based approach can outperform con-
ventional spectral techniques and the state-of-the-art corre-
lation analysis, and is more compatible with real-time BCIs
which have to work with short duration EEG epochs. The
proposed approach is fairly robust to unknown natural laten-
cies in brain response.

Index Terms— Ramanujan Subspace, Ramanujan Peri-
odicity Transform, Nested Periodic Matrices, Steady-state vi-
sual evoked potentials, Brain computer interface

1. INTRODUCTION

Steady State Visual Evoked Potentials (SSVEPs) are the
brain responses to external visual stimuli (e.g. rapidly flash-
ing fields), which can be recorded over the occipital scalp
regions. Due to the electrical activity of the neurons, es-
pecially in the neighborhood of the occipital region, high
levels of noise from the background brain processes are also
recorded and regarded as noise in detection of SSVEPs.

Differentiating patterns in the brain’s response to different
stimuli is the basis for brain computer interfaces (BCIs) used
for communication and control of locked-in and neurologi-
cally disabled patients. The common practice to extract event
related potentials is to average several EEG epochs recorded
over long durations. However, to realize their full potential,
real time BCIs have to work with much shorter epochs. As
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such, detection based on shorter duration trials has received
attention in recent years [1].

Various SSVEP detection methods were developed to de-
tect the underlying frequencies in the brain response. Power
Spectral Density Analysis (PSDA) is a popular spectral-based
technique, which estimates the peak magnitude of the PSD at
each stimulation frequency for classification [2]. However, to
have a decent frequency resolution longer time windows are
required, which may not be compatible with real time BCIs.
Liavas et al. proposed a periodogram-based method to detect
the SSVEPs, in which the pre-stimulus data is used to whiten
the post-stimulus data [3]. Lin et al. proposed a method based
on Canonical Correlation Analysis (CCA) that maximizes the
correlation between the set of observations and a set of si-
nusoids that model the stimuli at different frequencies. The
maximum correlation obtained from CCA is used to identify
the underlying frequency [1].

There is evidence that the brain produces a response (res-
onance) at a frequency that matches that of the stimulus [4],
and in many works the SSVEPs are modeled as sinusoids with
the corresponding frequencies [3]. Hence, SSVEPS are ex-
pected to feature some periodicities. In this work we propose
a new method to detect the underlying periodicity based on
a family of matrices called Ramanujan Periodicity Transform
(RPT) [5, 6], which to the best of our knowledge is used in
this context for the first time. Tenneti and Vaidyanathan in-
troduced the RPT matrices and established their potential in
estimating periods directly from the data, and in overcoming
the limitations of spectral-based techniques [5]. They evalu-
ated the RPT on real world problems such as Protein Repeats
and Electrocardiography. Furthermore, using numerical ex-
amples they have shown that RPT is more robust to noise and
time shifts. We find this feature particularly useful for SSVEP
detection, since brain responses can be modeled as sinusoids
with a latent phase variable capturing inter-subject variability.

We introduce the RPT matrices in Section 2. In Section
3, we describe the detection problem and the proposed RPT
based approach. In Section 4 we present results using real
SSVEP data. A brief discussion and conclusion are provided
in Section 5.

959978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



2. BACKGROUND

The authors of [5] introduced a novel method inspired by Ra-
manujan Periodicity Transform for detecting periodicties in
data that, unlike traditional spectral methods, directly targets
period estimation [6]. They introduced a family of matrices,
dubbed Nested Periodic Matrices (NPM), with special prop-
erties that could be leveraged to detect such periodicities. Ra-
manujan sums are defined as [7]

cq(n) =

q∑
k=1

gcd(k,q)=1

e(j2πkn)/q, (1)

where gcd(k, q) is the greatest common divisor of k and q.
A periodic signal with period P repeats every P samples, i.e.
x(n + P ) = x(n) for all n ∈ N. We briefly review the
construction of an NPM in [5]. In general, the period P has
k divisors, and for each divisor di, i = 1, . . . , k, we construct
a matrix Cdi . Each Cdi is a P × φ(di) matrix, where φ(n)
is the Euler totient function defined as the number of integers
from 1 to n that are coprime to n. Each column of the matrix
is a sequence of length P with period di, where di ≤ P .
Therefore, we have k sub-matrices one for each divisor of P ,
which are used to construct an NPM matrix as

A =
[
Cd1 Cd2 . . . Cdk

]
. (2)

A family of matrices with the characteristics of an NPM
matrix were introduced in [5], such as natural basis matri-
ces, DFT matrices and the Ramanujan Periodicity Transform
(RPT) matrices. This paper focuses on the use of RPT ma-
trices as they were shown to exhibit more robustness to noise
and time delays. For each divisor q of P , we construct a
sub-matrix of the RPT matrix. In particular, based on the
Ramanujan sum equation in (1), for each divisor q we obtain
the sequence cq with length P and period q, and define the
column

cq =
[
cq(0) cq(1) . . . cq(P − 2) cq(P − 1)

]T
. (3)

We generate the remaining φ(q) − 1 columns as circularly
downshifted versions of cq . Then, c(1)q is the circulary down-
shifted version of cq , i.e.,

c(1)q =
[
cq(P − 1) cq(0) cq(1) . . . cq(P − 2)

]T
(4)

Hence, the sub-matrix Cq can be constructed by concatenat-
ing these columns as

Cq =
[
cq c

(1)
q . . . c

(φ(q)−1)
q

]
. (5)

As an example, for c5(n) = {4,−1,−1,−1,−1}T , the sub-
matrix C5 is given by

Cq =


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4
−1 −1 −1 −1

 . (6)

Now we construct the RPT matrix A as in (2) using all the k
sub-matrices corresponding to the divisors of P . For P = 5,
d1 = 1, d2 = 5, thus the RPT matrix is

A =


1 4 −1 −1 −1
1 −1 4 −1 −1
1 −1 −1 4 −1
1 −1 −1 −1 4
1 −1 −1 −1 −1

 . (7)

The first submatrix has only 1 column since φ(1) = 1, and
the second submatrix consists of 4 columns since φ(5) = 4.
For any divisor q of P , there are precisely q columns in the
NPM matrix with period q or a divisor of q as established
in [5, Lemma 1]. Furthermore, any P×1 vector y with period
q can be spanned by these q columns. It also follows that any
P × 1 vector y with period q that is a divisor of P can be
written as y = Ac, where A is an NPM matrix, and c is only
supported on the set of columns of A with periods equal to a
divisor of q, i.e. only the entries of c corresponding to such
columns are non zero. For complete statements of the lemmas
and their proofs, we refer the reader to [5], [6], [8].

3. PROBLEM DESCRIPTION AND APPROACH

Repetitive visual stimuli, e.g. flashing illuminated fields at
certain frequencies, can induce evoked potentials in the brain,
that can be identified in EEG traces. Resonance spikes are
often obvious in the EEG power spectrum with the same fre-
quency of the stimulus [3], therefore SSVEP signals are ex-
pected to exhibit periodicities. A primary focus of BCI re-
search lies in developing advanced signal processing tech-
niques to efficiently detect the selection of stimulus (among
several rapidly-flashing visual stimuli) in a subject’s EEG to
increase the utility of SSVEP-based BCI used for control and
communication for neurologically disabled patients.
Brain response classification: In this work, we propose
a new approach to identify the underlying frequencies of
SSVEPs using the RPT matrices. Due to inter-subject vari-
ability in the delay of the brain response to an external stimu-
lus, we model the brain response using sinusoids with known
frequencies (corresponding to the different stimuli) but un-
known phase to capture the unknown latency. For simplicity,
we consider a binary hypothesis testing problem based on
two possible stimuli

H0 : y(t) = cos(2πf0t+ θ) + n(t)

H1 : y(t) = cos(2πf1t+ θ) + n(t)
(8)

where y(t) denotes samples from the EEG trace, n additive
noise modeling the background neuronal noise, and θ the un-
known phase modeled as a uniform random variable with dis-
tribution

fθ(θ) =

{
1
2π 0 ≤ θ ≤ 2π

0 otherwise.
(9)
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RPT based classifier: We outlined the fundamentals of gen-
erating a Ramanujan subspace in Section 2. Since an observa-
tion vector can be expressed as y = Ac, where A is a P ×P
RPT matrix, the vector c provides an alternate representation
of the vector y. For each of the divisors di of P , one can
obtain the energy E(di) of the coefficients that correspond to
the columns of A with period di as

E(di) =

K+φ(di)∑
k=K+1

|c(k)|2, K =
∑
p|P
p<di

φ(p) (10)

where p|P means that p is a divisor of P .
For example, consider a cosine wave with frequency f0 =

8 Hz over the time interval [0, 1] sampled at sampling fre-
quency fs = 256Hz, i.e.,

y(t) = cos(2πf0t) + n(t). (11)

Hence, the period T0 , fs/f0 of the sequence of samples
from the cosine wave will be 256

8 = 32 samples. To obtain
c we form the vector y from the noisy data samples and con-
struct the P × P RPT matrix A. Since the length of the se-
quence is 256, we use P = 256. Note that the period T = 32
is a divisor of P . The Strength vs. Period plot representing
the energy of the coefficients of the columns with periods that
are divisors of P in (10), is depicted in Figure 1 (right). One
can observe that the energy in period 32 has the largest value.
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Fig. 1. Strength vs. Period for a cosine wave with period
T = 32.

To build a classifier for the hypothesis testing problem in
(8), we use the prior knowledge about the frequencies of the
SSVEPs to construct a matrix A, such that all the periods
(i.e. T0 and T1) are divisors of P . To this end, we generate
the P × P RPT matrix, where P = lcm(T0, T1), the least
common multiplier of T0 and T1. For instance, if f0 = 8Hz
and f1 = 14Hz with sampling frequency fs = 256, the cor-
responding periods will be T0 = 32 samples and T1 = 18
samples. Hence we use P = lcm(32, 18) = 288 samples.
This sets a lower bound lcm(T0, T1)/fs on the length T (in
seconds) of the observation vectors y. In this example, we
need to use EEG epochs with duration T ≥ 1.1250 sec.

We classify the EEG trials by comparing the energies cor-
responding to each of the periods T0 and T1,

E(T1)

E(T0)

T1

≷
T0

1 (12)

and choosing the period with the larger value. To assess
the performance of this approach, we evaluate the Accuracy,
Probability of Detection PD and Probability of False Alarm
PF for different time windows as

Accuracy =
TP + TN

TP + TN + FN + FP
(13)

PD =
TP

TP + FN
, PF =

FP

TP + TP
(14)

where TP denotes the True Positives, TN the True Nega-
tives, FN the False Negatives and FP the False Positives.

4. RESULTS

Data: We evaluate the performance of the proposed approach
using a publicly available SSVEP dataset [9]. The dataset
contains the EEG recordings of four subjects and for each
subject there are 5 trials for every stimulus frequency. The
frequencies are 8, 14 and 28 Hz, so there are 20 trials for each
frequency in total. The signals are sampled at 256 Hz. Each
trial begins with a 5-second pre-stimulation period, followed
by 15-second SSVEP in response to the stimulus, and ends
with a 5 second post-stimulus. Since the SSVEPs are known
to be detected over the visual cortex, we created a virtual vi-
sual electrode by averaging over the electrodes that are close
to the visual cortex. The electrodes used in this work are A14,
A15, A16, A21, A22, A23, A25, A27, A28, and A29. To re-
move the DC baseline of the EEG signals, a time average is
computed and removed from all the trials. We only used two
sets of data that are SSVEPs to 8 Hz and 14 Hz stimuli.

Although we have 15 seconds of post-stimulus SSVEPs,
for real time BCI, we need shorter epochs to test the per-
formance. To this end, we used time windows of duration
T = n · lcm(T0, T1)/fs, for differet values of n ∈ N. There-
fore, the RPT matrix A would be of size Tfs × Tfs. For
example, for n = 2 we have T = 2.250 sec leading to a
576×576 matrix, and both T0 = 32 and T1 = 18 are divisors
of 576. Figure 2 illustrates the Strength vs. Period plot for
two trials with T = 2.50 sec, one from the 8 Hz and the other
from the 14 Hz datasets.

Table 1 presents the performance of the RPT based clas-
sifier for different time windows based on the criteria in (13)
and (14). The RPT based classifier is generally successful at
detecting the true underlying frequency even over short time
windows. Hence, this approach holds potential for real-time
BCI, which must work with short and single-trial epochs.

Harmonics are often present in an EEG trace (the brain
does not really behave as a linear system). As such, in the
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Fig. 2. Strength vs. Period plot for T0 = 32 (left) and T1 =
18 (right). This illustrates that the strength on period 32 and
its divisors is greater than the strength on period 18 when the
true underlying frequency is 8 Hz and vice versa for 14 Hz.

Table 1. Performance of RPT based classification using dif-
ferent time windows.

Time Windows(sec) 1.1250 2.25 3.3750 4.5
Accuracy 0.7625 0.8375 0.875 0.875

PD (f = 8Hz) 0.6625 0.70 0.75 0.75
PD (f = 14Hz) 0.8625 0.975 1 1
PF (f = 8Hz) 0.1375 0.025 0 0
PF (f = 14Hz) 0.3375 0.3 0.25 0.25

next experiment we added the strength of the second largest
divisors (T0/2 and T1/2) to the energies of the main period
components. Table 2 shows a general improvement in the
overall performance. We note that these results show the av-
erage performance of all four subjects. However, for two of
the subjects, the RPT reached an accuracy above 90 percent
even with a time window of 1.1250 sec.

In our next experiment, we compare the performance of
the proposed approach to conventional spectral techniques
and CCA. PSDA is one of the most popular and widely used
methods based on power spectral density analysis (PSDA).
To this end, we used 256-point FFT, and to determine the
peak frequency we used the method in [1]. We also consider
two alternative decision rules. One rule is the Maximum
Likelihood (ML) detection rule for the binary hypothesis test-
ing problem (8) of sinusoids with unknown phase in additive
noise [10]. The other decision rule, designated as ML-no
phase, is an ML rule for a model that ignores the unknown
phases, i.e. assumes θ = 0 in (8). Figure 3 illustrates the
results obtained from RPT, PSDA, CCA and the ML rules
using four different time windows. We note that the length of
the windows in the RPT and PSDA methods are not exactly
equal, but the difference is negligible, as in RPT we use time
windows for which the target periods are divisors. As shown,
RPT generally outperforms the other approaches.

5. DISCUSSION AND CONCLUSION

In this work, we proposed a new method to classify the un-
derlying frequency of SSVEPs based on RPT matrices. The

Table 2. Performance of RPT when the energies of the divi-
sors of T0 and T1 are also used. Divisors of the period values
can represent harmonics in this context.

Time Windows(sec) 1.1250 2.25 3.3750 4.5
Accuracy 0.7937 0.90 0.90 0.925

PD (f = 8Hz) 0.75 0.85 0.80 0.90
PD (f = 14Hz) 0.8375 0.95 1 0.95
PF (f = 8Hz) 0.1625 0.05 0 0.05
PF (f = 14Hz) 0.25 0.15 0.2 0.1
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Fig. 3. Performance of RPT, PSDA, CCA and the two ML
rules for real time applications.

work in [5] has shown that RPTs and other NPMs can identify
periodicities directly from the sequences rather than from the
PSD as for conventional spectral methods. Our results show
that RPT-based methods can detect event related potentials in
real data in presence of high levels of noise from background
brain processes. The performance can further improve by ac-
counting for energies in harmonics corresponding to energies
of the divisors of the period values.

While statistical decision rules (such as ML) are highly
sensitive to model mismatch – recalling the severe perfor-
mance degradation when we dropped the unknown phase –
the RPT based approach is fairly robust to phase shifts.

Conventional spectral methods such as PSDA are gener-
ally successful at detecting the underlying frequencies, albeit
they rely on averaging over several epochs of data recorded
over long experimental durations, which limits their appli-
cability in real-time BCIs. In this context, we investigated
the performance of detection methods with shorter duration
trials. The comparison results indicate that leveraging RPT
matrices is promising, and holds potential to improve over
conventional spectral techniques, for real time applications.

In future work, we plan to further push the boundaries
of real time SSVEP detection by studying means to dispense
with the lower bound T ≥ lcm(T0, T1)/fs on the length of
the EEG trials that stems from our choice of P in the design
of the matrix A.
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