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ABSTRACT

Event-related potentials (ERP)s are electrophysiological responses
that are commonly used for detecting the brain response to external
stimuli. In this paper, we propose to use the sparse common com-
ponent and innovations model (SCCI) to extract ERPs from multiple
EEG signals recorded across closely located electrodes. This model
finds the sparse representation of the common component of the sig-
nals and their innovation components with respect to pre-determined
common and innovation dictionaries, where the common compo-
nent refer to an event captured by adjacent electrodes such as ERPs.
However, different stimuli may produce different responses and pre-
determining the dictionary may not always be optimal. Therefore, we
introduce a structured dictionary learning method to simultaneously
learn the two dictionaries from training data. The proposed method
is applied to a study of error monitoring where two different types
of brain responses are elicited corresponding to the decision made
by the subject. The learned dictionaries can discriminate between
the response types and extract the ERP corresponding to the two
responses.

Index Terms— Distributed Compressive Sensing, Dictionary
Learning, Jointly Sparse Signal Model, Electroencephalography,
Event-related potentials.

1. INTRODUCTION

Event-related potentials (ERPs) have been used extensively for the
detection of neural diseases and the design of brain computer in-
terfaces (BCI) [1, 2]. The difficulty with extracting ERPs is that
their amplitude is small compared to the background activity. Dif-
ferent approaches such as averaging, independent component anal-
ysis (ICA), and wavelets [3] have been proposed [4]. Since ERPs
are time-locked, it is assumed that averaging will add-up the effect
of ERP while attenuating the non time-locked on going EEG activ-
ity. ICA is used to separate the evoked potential from the background
activity using the signals recorded by nearby electrodes [4] assum-
ing that ERP and ongoing EEG activity are statistically independent,
which is not necessarily true. Wavelet based approaches, on the other
hand, identify the coefficients associated with ERPs statistically [3].
This method requires selecting the threshold value, and assumes ERP
lies in a subspace of wavelet space. ERPs have also been extracted
[5] by principle component analysis with the assumption that after
averaging the variance of the background activity decreases while the
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variance of ERP has a direction which can be found using PCA. This
assumption is true only if the background activity is noise, where in
practice it corresponds to other brain events that are not of interest.

ERP signals such as P300, and error-related negativity (ERN)
are usually similar across neighboring electrodes due to volume con-
duction [6]. Volume conduction refers to activity that may come
from a single source but is observed at multiple scalp electrodes [7].
Therefore, ERP extraction from background EEG activity can be per-
formed by extracting the common component of the set of neighbor-
ing electrodes. Sparse common component and innovations (SCCI)
has been proposed as a plausible model for describing the activity
across neighboring electrodes [8, 9]. This model has been commonly
used in distributed compressive sensing problems where sensors dis-
tributed across a field capture a jointly sparse common component
plus innovation signals and have been recently used for compressing
EEG signals [10]. Due to the inter-signal correlation, jointly sparse
signals are usually assumed to be composed of a common sparse
component which is shared by all signals, and an innovation com-
ponent which is unique to each signal [11].

In SCCI, the sparsity of the two parts of the signals is usually
described through pre-defined dictionaries. However, as the litera-
ture in dictionary learning indicates, pre-defined dictionaries are not
necessarily optimal in terms of sparsity and reconstruction error [12].
The well-known dictionary learning algorithms such as K-SVD and
method of optimal directions (MOD) [13] cannot be directly used for
SCCI as they do not guarantee the preservation of the special structure
of the SCCI dictionary. Recently, Chen et al. [14] proposed Joint Or-
thogonal Matching Pursuit (JOMP) with dictionary update for SCCI.
In each iteration, only one atom for representing either the common
or the innovation components is selected based on the correlation be-
tween the residue and the atoms of the input dictionary. However,
when combined with dictionary learning, this method only learns a
single dictionary for the common and innovation components, where
some atoms belong to the common component and others belong to
the innovation components. As a result, when JOMP recovers the
sparse representation of the common component of the test data with
respect to this dictionary, it may recover the common component
based on the atoms which were learned to represent the innovation
component. On the other hand, it may recover the innovation compo-
nent of the test data based on the atoms learned to represent the com-
mon component of the training data. Barthlemy et al. [15] proposed a
data-driven method which takes into account the inter-channels links
in the spatial multivariate model, and shift-invariance is used for the
temporal model. The proposed algorithm is outperformed the Ga-
bor dictionary since Gabor dictionary lacks the spatial flexibility for
inter-channel links.
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In this paper, we propose a two-stage dictionary learning algo-
rithm which addresses these problems by learning two separate dic-
tionaries for the common and innovation components simultaneously.
In the proposed structured K-SVD method, first the common com-
ponent dictionary is updated the coefficient vector and the training
data, and then the innovation component dictionary. The procedure
to update the common and innovation dictionaries are similar to K-
SVD, where the updated atom is the singular vector of the error ma-
trix. Unlike K-SVD, the structured K-SVD decomposes the main dic-
tionary to the common and innovation dictionaries and learns these
subdictionaries. The structured K-SVD is used to learn the common
and innovation dictionaries for error-related negativity (ERN) and the
correct-related negativity (CRN) from training data. ERN and CRN
are ERPs that are commonly used to index cognitive control [16].
Finally, the learned dictionaries are used to extract the two ERPs cor-
responding to different responses.

2. BACKGROUND

2.1. Sparse Common Component and Innovations Model

Distributed compressive sensing assumes that signals acquired across
multiple sensors such as EEG signals are jointly sparse in a dictio-
nary. Due to the inter-signal correlation, jointly sparse signals are
usually assumed to be composed of a common sparse component
which is shared by all signals, and an innovation component which is
unique to each signal [11].

Given a set of signals Λ = {xj ∈ RN ; ∀j ∈ {1, 2, . . . , J}}
that are jointly sparse, and using the joint sparsity model (JSM) [17,
9] with a common component zc ∈ RN and an innovation com-
ponent zj ∈ RN , the signal xj can be written as: xj = zc +
zj , j = 1, 2, . . . , J . The common and innovation components of
the set of signals Λ are sparse with respect to two different sets of
bases, φc and φj , respectively, as: zc = φcθc and zj = φjθj , j ∈
{1, 2, . . . , J}, where θc and θj are the coefficient vectors. Since the
signal xj is sparse in the transform domain, the coefficient vectors
have a small number of nonzero entities, ‖θc‖0 = Kc � N and
‖θj‖0 = Kj � N .

In order to recover the sparse representation of the set of signals
Λ, all signals are stacked to form a single optimization problem.

X = ΦΘ,

X =


x1

x2

...
xJ

 ,Φ =


φc φ1 0 · · · 0
φc 0 φ2 · · · 0
...

...
. . .

. . .
...

φc 0 · · · 0 φJ

 ,Θ =


θc
θ1
θ2
...
θJ

 ,
(1)

where X ∈ RJN×1, Φ ∈ RJN×(J+1)N , and Θ ∈ RJN×1.
The goal is to find the coefficient vector Θ such that the error be-

tween the signal X and the sparse representation ΦΘ is minimized:

Θ̂ = arg min ‖Θ‖0 s.t. ‖X−ΦΘ‖22 ≤ ε, (2)

where ε is the bound on the recovery error. Since the optimization
problem in Eq. 2 is NP-hard and non-convex, the l1-norm minimiza-
tion is commonly used [17, 9].

2.2. K-SVD Algorithm

In traditional sparse signal recovery, predefined basis sets such as
Fourier, wavelets or their combinations are commonly used to find
the sparse representation of signals. However, in many applications,

the dictionary representing the sparse representation of the signal is
not known. Dictionary learning (DL) has been developed to address
this problem [18, 12]. Current dictionary learning algorithms such
as K-SVD [12] and MOD [13] focus on signals that have a common
sparse representation, and not on SCCI model described in Section
II.A.

Dictionary learning algorithms try to find the sparse coeffi-
cient vectors A = [α1, α2, . . . , αJ ] and the dictionary D =
[d1,d2, . . . ,dL] for a set of training signals Y = [y1,y2, . . . ,yJ ]
in the model Y = DA such that:

minA,D {‖Y −DA‖2F } s. t. ∀i ‖αi‖0 ≤ K (3)

where K is the sparsity level of the coefficient vectors, yj ∈ RN ,
αj ∈ RL, Y ∈ RN×J , D ∈ RN×L, A ∈ RL×J , and L ≥ N .

K-SVD minimizes Eq. 3 iteratively by first finding the coefficient
vectors, A, while the dictionary, D, is fixed and then updating D.
After initializing the dictionary D(0), in the first stage, K-SVD uses a
pursuit algorithm to find the sparse coefficient vector at each iteration
k, α(k)

j , for each signal yj , j ∈ {1, 2, . . . , J} through solving the
following optimization problem:

min
α
(k)
j

‖α(k)
j ‖0 s. t. ‖yj −D(k)α

(k)
j ‖

2
2 ≤ ε ∀j ∈ {1, 2, . . . , J}.

(4)
Once the sparse coefficients are computed, K-SVD updates one

column of D(k) at a time, fixing all columns in D(k) except d
(k)
l ,

and updating the lth column vector as d
(k+1)
l . In order to update

the lth column dl, ωl is defined as the group of indices pointing to
the training signals yjs that use the atom dl, which is equivalent to
the nonzero entries of αlT , where αlT is the lth row of A, as: ωl =
{j|1 ≤ j ≤ J, αlT (j) 6= 0}. The overall representation error matrix
El is computed as:

El = Y −
∑
f 6=l

dfα
f
T . (5)

The matrix ER
l is obtained by selecting the columns of El with the

columns identified in ωl. After applying SVD to the matrix ER
l =

U∆VT , the updated dictionary column dk+1
l is equal to the first

column of U whereas the updated coefficient vector αlR is the first
column of V multiplied by ∆(1, 1). This process is repeated until
the stopping criteria are met.

3. COMMON AND INNOVATION DICTIONARIES
LEARNING

The challenge with using dictionary learning algorithms such as K-
SVD in SCCI is that they cannot be applied directly to Eq. 2. The
dictionary in these equations, Φ ∈ RJN×(J+1)L, is constructed from
different sets of basis, φc ∈ RN×L and φj ∈ RN×L 1. Thus, some
entities of the dictionary Φ are constrained to zero (as depicted in
Eq. 1). However, no existing dictionary learning algorithm guaran-
tees that this structure of Φ will be preserved during the update step of
the dictionary. Therefore, we propose a structured dictionary learning
algorithm based on K-SVD to fulfill this constraint and learn the dic-
tionary Φ from the training samples. To learn the common dictionary,
we need multiple observations of the common component. However,
the whole set of signals share one common component. Therefore,
we randomly select J training signals from the whole set of training
signals to learn the dictionaries, and repeat the process to update Φ.

1Note that we assume one unique φj for all J innovation components
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After initializing the bases φc and φj and constructing Φ(k) at the
kth iteration, the coefficient vector Θ̂(k) ∈ R(J+1)L×1 is estimated,
as:

Θ̂(k) = arg min ‖Θ(k)‖0 s.t. ‖X−Φ(k)Θ(k)‖22 ≤ ε. (6)

where X ∈ RJN×1 is the input set of training signals as in Eq. 1.
After updating the coefficient vector, dictionaries φc and φj are

updated separately in similar manner to K-SVD. In order to update
φ
(k)
c , φ(k)

j is assumed to be fixed and φ
(k)
c = [d1,d2, . . . ,dL].

The vector of input signals X ∈ RNJ×1 is rearranged as a matrix
Y = [x1, . . . ,xJ ] ∈ RN×J , and the coefficient vector θ̂c ∈ RL×1

for the common part is concatenated to form the matrix A
(k)
c =

[θ̂c, . . . , θ̂c] ∈ RL×J . Since all training signals have the same com-
mon component, they all either use the lth atom or not. Thus, ωc,l is
defined as a row vector of ones with size J , 1 ∈ R1×J if the common
component includes the lth atom of the common dictionary, or a row
vector of zeros with size J , 0 ∈ R1×J . The error corresponding to
the lth atom, Ec,l ∈ RN×J , is defined as:

Ec,l = Y −
∑
f 6=l

dfθ
f
c,T . (7)

The matrix ER
c,l is obtained by selecting the columns of Ec,l

with the columns identified in ωc,l. d
(k+1)
l is the first eigenvector

of ER
c,l = Uc∆cV

T
c while its corresponding coefficient vectors are

updated by replacing them with the first column of Vc multiplied by
∆c(1, 1).

Once all the columns of φ(k+1)
c are updated, the second dictio-

nary φ(k)
j is updated in a similar manner assuming φ(k+1)

c is fixed.

The dictionary φ(k)
j = [c1, c2, . . . , cL], and the vector of coefficients

{θ̂(k)j }
J

j=1
from Θ(k) is rearranged to A

(k)
j = [θ̂1, . . . , θ̂J ] ∈ RL×J .

The set ωj,l = {i|1 ≤ i ≤ J, θlj,T (i) 6= 0} is formed to indicate
which signals use the lth atom of the innovation dictionary. The error
matrix Ej,l is then computed based on the signals identified in ωj,l,
as:

Ej,l = Y −
N∑

f=1,f 6=l

cfθ
f
j,T , (8)

where θfj,T is the f th row of A. The matrix ER
j,l is obtained by se-

lecting the columns of Ej,l with the columns identified in ωj,l. The
first eigenvector of ER

j,l is considered as c
(k+1)
l .

Once φ(k+1)
c and φ(k+1)

j are updated completely, the main dictio-
nary Φ(k+1) is constructed again and the coefficient vector Θ̂(k+1)

is updated using Eq. 6. This process is repeated until convergence.
The pseudocode of the structured dictionary learning for SCCI is pre-
sented in Algorithm 1.

4. EXPERIMENTAL RESULTS

4.1. Synthetic Data

The proposed structured dictionary learning is first evaluated on a
set of synthesized signals. Two random matrices φc ∈ R32×32 and
φj ∈ R32×32 are generated with i.i.d. uniformly distributed entries
from U(0, 1) and U(5, 6), respectively. Each column is normalized
to a unit l2-norm. 150 signals {xi}150i=1, where xi ∈ R32×1, are
produced by adding the common component zc ∈ R32×1 and the
innovation components zi ∈ R32×1. The common component zc is
a linear combination of Kc atoms of φj , with uniformly distributed
i.i.d. coefficients in random and independent locations, U(0, 1). Sim-
ilarly, the innovation components zj are different linear combinations
of Kj atoms of φj .

Fig. 1. Percentage of successfully recovered atoms for the
common and innovation dictionaries versus the number of
sparse coefficients.

In order to apply K-SVD to synthetic signals, the dictionaries φc
and φj are initialized with the training data. After constructing Φ and
X, the coefficient vector Θ̂ is found using orthogonal matching pur-
suit (OMP) withKc+(Kj×150) coefficients, whereK = Kc = Kj

varying from 2 to 5. The maximum number of iterations was set to
20. The computed dictionaries φ̂c and φ̂j are compared separately
against the generating dictionaries φc and φj . This comparison is
done by sweeping through the columns of the generating dictionary
φc (or φj) and finding the closest column (in l2 distance) in the com-
puted dictionary φ̂c (or φ̂j). The distance is measured via 1−|dTi d̂i|,
where di is an atom of φc (or φj) and d̂i is the corresponding atom
in the learned dictionary. A distance less than 0.1 for φc and less than
0.05 for φj are considered a success. The simulations are repeated
500 times, and the number of successes in each simulation is com-
puted. Fig. 1 displays the percentage of successfully recovered atoms
for the common and innovation dictionaries. Overall, the percent-
age of recovered atoms of the common and innovation dictionaries
are more than 90%, and as the sparsity level increases, the accuracy
increases. The number of the recovered atoms of the common dictio-
nary is less than that of the innovation dictionary. J different innova-
tion coefficients {θj}Jj=1 are used to update the innovation dictionary.
However, J different common coefficients belong to the same com-
mon component, which means they all carry redundant information.
Thus, the atoms of the common dictionary are updated based on only
one common coefficient vector.

4.2. EEG Data

The proposed algorithm is applied to a set of EEG signals 2 contain-
ing ERN and CRN responses, which are ERPs that are commonly
used to index cognitive control [16]. The ERN is a brain potential
response that occurs following performance errors in a speeded re-
action time task usually 25-75 ms after the response [19]. In this
study, we focus on the EEG recordings for 16 female participants.
A speeded-response flanker task was employed, and response-locked
averages were computed for each subject [20]. The brain activity
is recorded during the error and correct processing using electroen-
cephalogram with sampling rate equal to 256Hz with 1 second before
the response and 2 seconds after the response. For each subject, EEG
data over multiple trials (repetition of the same visual stimulus) is
recorded (126 trials for ERN, and 1289 trials for CRN). The signals
from 62-channels were collected in accordance with the 10/20 system

2We thank Dr. Jason Moser from Michigan State University for sharing
his EEG dataset with us.
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Algorithm 1 Structured Dictionary Learning for SCCI

1: Input: Initialize φ(0)
c and φ(0)

j . Choose ε. Set k = 0.
2: Output: The common component dictionary φc, and the inno-

vation component dictionary φj .
3: while The convergence criteria is not met do
4: Form the basis matrix (Φ(k) ∈ RNJ×(J+1)L) from φ

(k)
c and

φ
(k)
j . Form the signal vector (X ∈ RJN×1) in Eq. 1 from the

training signals.
5: Solve l1-norm minimization in Eq. 6.
6: for l = 1:L do
7: Compute the error matrix Ec,l using Eq. 7.
8: Update dk+1

l using the singular vector of ER
c,l.

9: end for
10: for l = 1:L do
11: Compute the error matrix Ej,l using Eq. 8.
12: Update ck+1

l using the singular vector of ER
j,l.

13: end for
14: k = k+1
15: end while

on a Neuroscan Synamps2 system (Neuroscan, Inc.).
We assume that the electrodes that are close to each other will

follow SCCI model due to volume conduction [6]. Since we know
most of the ERN and CRN activities to be localized around frontal-
central brain regions [21], we select a time frame of (0, 150)ms cor-
responding to the ERP from electrodes F2, F4, F3, F5, and FCZ. We
randomly select 10 trials from each electrode for CRN and average
them to obtain the training dataset, and use another 10 and average
them to get the test dataset. Similarly, the trials of each electrode of
ERN are divided into two sets of training and test dataset. The num-
ber of training and test signals after averaging over trials for 16 sub-
jects and 5 electrodes is 80. The training signals are used to learn the
common and innovation dictionaries for ERN and CRN, separately.
Fig. 2 (a) and (b) show the learned common component dictionaries
for CRN and ERN, respectively. In order to evaluate how similar the
learned dictionaries for CRN and ERN are, the distance 1 − |dTi d̂i|
is computed. 12 atoms out of 41 atoms of the common components
dictionary of ERN are close to that of CRN, which justifies the need
to learn the dictionaries for the two response types separately.

The learned dictionaries are used to find the common compo-
nents of the test CRN and ERN data. Fig. 2 (c) and (d) show the
common component of CRN and ERN, respectively. The error pro-
cessing waveform has a negative peak right after the response and
becomes positive around 100ms after the response. However, the
waveform for the correct response does not show the same negative
peak (Fig. 2 (c)). This is expected as the ERN is known to have a
larger negative peak immediately after the response as opposed to the
CRN. We also compared the recovered ERPs to the ones obtained by
averaging (Fig. 2 (c) and (d)). The recovered ERN using using av-
eraging remains negative after 100ms (Fig. 2 (d)), and detecting the
ERN boundaries becomes difficult.

Similarly, the same electrodes are used to extract P300, a well-
known evoked potential to visual stimulus, which starts around
200ms after the response and ends around 400ms after the response.
P300 after CRN and ERN are expected to be different. Thus, the
common and innovation dictionaries for P300 of CRN and ERN are
learned from the set of training signals, separately. The learned dic-
tionaries are used to extract the common components from the test
data. Fig. 2 (e) and (f) show P300 extracted from the test data using
the learned dictionaries. In comparison to averaging, DL can extract

(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) The dictionary learned to represent the common
component of CRN, (b) and ERN; (c) The common compo-
nents of the CRN, (d) and ERN of the test data recovered using
the learned dictionary and averaging; (e) The common compo-
nents of P300 after CRN and (f) ERN of the test data recovered
using the learned dictionary and averaging.

positive peaks in P300 after ERN which is aligned with literature and
referred to as P3e [22].

5. CONCLUSIONS

In this paper, we proposed to use the sparse common component and
innovations model to extract ERPs from EEG recordings of closely
located electrodes. Since responses to different stimuli have different
characteristics, predefined dictionaries are not suitable to represent
and distinguish between them. We introduced a structured K-SVD
algorithm to simultaneously learn the common and innovation dictio-
naries. The proposed structured dictionary learning algorithm is used
to separately learn the dictionaries representing the common compo-
nents of ERN and CRN. The comparison of the learned dictionaries
shows the differences between the dictionaries needed to represent
ERN and CRN. Finally, the learned dictionaries are used to extract
the ERPs corresponding to different responses. The results are con-
sistent with previous findings about the waveforms of ERN and CRN.
Future work will consider the extension of the structured K-SVD al-
gorithm to hierarchical implementation of SCCI for time and memory
efficiency.
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