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ABSTRACT

Graph signal processing extends the notion of frequency
from signals in the time domain to signals defined on graphs.
Graph signals arise in many applications including brain sig-
nals defined on functional connectivity networks. Most of
the current work on graph signal processing focuses on static
graphs. However, functional connectivity networks are dy-
namic and the signals on these networks change with time.
In this paper, we introduce a new transform for dynamic net-
works named as Dynamic Graph Fourier Transform (DGFT).
The proposed approach extends the notion of graph Laplacian
from the static case to the dynamic case through the network
Laplacian tensor. The basis functions for the transform are
obtained through the Tucker decomposition of this Laplacian
tensor. The proposed method detects nonstationary activity
in the network structure and allows us to obtain information
about the regions in the brain that contribute to different fre-
quency contents in a cognitive control experiment.

Index Terms— Dynamic Graph Fourier Transform, Mul-
tilinear Analysis, Functional Connectivity Networks, Graph
Signal Processing.

1. INTRODUCTION

The recent field of signal processing over graphs has pro-
vided the tools for processing signals defined on irregular do-
mains such as graphs [1]. In many applications, such as social
networks, sensor networks, energy networks, and brain net-
works, among others, signals lie on the set of vertices of the
network. Recently, it has been shown [2] how signal process-
ing methods adapted to signals on graphs such as filtering and
Fourier transform defined in the context of signal processing
over graphs provide insights about learning processes in the
brain.

Various transforms from signal processing have been
adapted to the graph domain to analyze the spectral content
of signals over graphs. The first one of these is the graph
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Fourier transform (GFT), which aims to compute the Fourier
transform of a signal defined on the vertices of a graph by em-
ploying a basis obtained from the network's adjacency matrix
[3] or Laplacian matrix [1]. Another transform defined on
graph signals is the windowed graph Fourier transform [4],
which considers the nonstationarity of the graph signals and
transforms them to the vertex-frequency domain. Recently,
the joint time-vertex Fourier transform [5] and the dynamic
graph wavelet transform [6] have been proposed for the case
of graph signals evolving over time. However, in both of
these approaches the graph that the signal is defined on is
fixed across time.

In certain applications, such as functional connectivity
networks in the brain, the underlying network structure varies
over time [7, 8]. This requires the adaptation of the previ-
ously mentioned graph signal transforms in order to consider
the nonstationary network structure. For example, in the
case of the graph Fourier transform, the adjacency matrix or
the Laplacian matrix of the network changes for each time
instance, and a unique spectral representation is not possi-
ble. Therefore, there is no unique definition of frequency
across time as the graph evolves. This problem has been
previously addressed by defining a common Laplacian across
time, where a common subspace was found by means of
Grassmann manifolds [9]. However, the accuracy of a com-
mon subspace is compromised as the number of time points
increases. Another alternative would be averaging of the
adjacency matrix or the Laplacian [10]. However, averaging
does not necessarily find the optimal subspace across time.

In this paper, two major contributions are presented. First,
unlike prior work, we propose to find a common subspace
estimate across time for the temporal network by means of
tensor decomposition. The temporal network adjacency ma-
trices or Laplacian matrices over time constitute a 3-way ten-
sor. The Tucker decomposition of this tensor results in the
orthonormal component matrices which define the basis of
the time-varying Laplacian operator. The obtained basis and
the corresponding subspace are optimal in the sense of find-
ing the best low-rank approximation to the Laplacians across
time. Second, we introduce a windowed transform for non-
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stationary networks. The proposed method is able to detect
anomalies in the networks and, unlike averaging based meth-
ods, provides information about relevant vertices in the net-
work contributing to intervals of high energy.

This paper is organized as follows. Section 2 introduces
background on graph theory, graph Fourier transform and ten-
sor decomposition. Section 3 presents the proposed tensor
based dynamic graph Fourier transform. Section 4 presents
results on simulated graph signals and dynamic functional
connectivity networks (dFCNs) constructed from electroen-
cephalogram (EEG) data. Section 5 presents the conclusions
and future work.

2. BACKGROUND

2.1. Graph Theory

A graph G = (V,E,A) is defined by a set of N vertices, V ,
and a set of M edges, E, eij , i, j ∈ {1, ..., N}. The adja-
cency matrix A = [aij ] represents the relationship between
vertices. The Laplacian matrix is defined as L = ∆ − A,
where ∆ is the degree matrix, and is defined as a diagonal
matrix with δi equal to the degree of the ith vertex, ki =∑N

j=1 aij . The Laplacian L is a positive semidefinite and
real matrix and thus has a complete set of orthonormal eigen-
vectors {ul}l=0,1,...,N−1, and eigenvalues {λl}l=0,1,...,N−1,
0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1. In this work, we only consider
undirected, weighted connected graphs.

2.2. Graph Signal Processing

Let the signal f : V → R be defined on the vertices of the
graph G. It is represented by a vector f ∈ RN×1, and the ith

element of this vector corresponds to the signal at vertex vi
[3]. The graph Fourier transform (GFT) of a signal f defined
on the vertices V is given by [1]

f̂(λl) = 〈f,ul〉 =

N∑
i=1

f(i)u∗l (i), (1)

where ul, l = 0, 1, . . . , N − 1 correspond to the eigenvectors
of the graph Laplacian. The inverse graph Fourier transform
(GFT) is obtained by

f(i) =

N−1∑
l=0

f̂(λl)ul(i). (2)

As observed in (1), the underlying structure of the network
plays a fundamental role on the graph spectral content [1].
In particular, the Laplacian spectrum provides a sense of fre-
quency. The eigenvectors ul are ordered with respect to their
corresponding eigenvalues, with u0 being a constant equal to
1√
N

for connected graphs, and increasing their oscillations as
l increases.

2.3. Tucker Decompositions

Let X ∈ R I×J×K be a 3rd-order tensor. The tensorA can be
decomposed by means of Tucker decomposition as

X = C ×1 B
(1) ×2 B

(2) ×3 B
(3), (3)

where C ∈ RI×J×K is the core tensor and the factor matrices
B(1) ∈ RI×I , B(2) ∈ RJ×J , and B(3) ∈ RK×K are orthog-
onal. The matrices B(1), B(2), and B(3) can be obtained as
the left singular vectors of X(1) ∈ RI×JK , X(2) ∈ RJ×KI ,
and X(3) ∈ RK×IJ , respectively [11].

3. DYNAMIC GRAPH FOURIER TRANSFORM ON
TEMPORAL NETWORKS

3.1. Dynamic Graph Fourier Transform

Consider the dynamic network G(t) = (V,E(t), A(t)), t =
1, 2, . . . , T , to be a time-varying network whose edges vary
with time and the vertex set remains constant. The adja-
cency matrices A(t) over time constitute the 3-way tensor
A ∈ RN×N×T , where N is the total number of vertices, T is
the total number of time points, and A(:, :, t) = A(t). Simi-
larly, we define the 3-way tensor D ∈ RN×N×T from the de-
gree matrices D(t) over time, where D(:, :, t) = D(t). Since
in traditional GFT the eigenvectors of the Laplacian define the
basis for the transform, we use the same idea to find the com-
mon subspace of the Laplacians, L(t), across time. Some pos-
sible approaches to combining multiple Laplacians include
averaging, weighted averaging [12, 13] and a more recent op-
timization framework based on a maximum likelihood crite-
rion [14]. In order to find the common subspace, we define the
3-way tensor from the Laplacians of the time varying graph
as L ∈ RN×N×T , where L(:, :, t) = D(:, :, t)−A(:, :, t), and
find the subspace information through Tucker decomposition
as

L = C ×1 U×2 U×3 V, (4)

where C ∈ RN×N×T is the core tensor and the factor matri-
ces U ∈ RN×N , and V ∈ RT×T . Due to the symmetry of
L along the first and second modes the corresponding factor
matrices are identical.

We propose to consider the left singular vectors of the ma-
trix L(1) ∈ RN×NT , ul, l = 0, 1, . . . , N − 1, as the com-
mon basis to be employed in the graph Fourier transform of
the time-varying network G(t). This procedure avoids the
need of finding a common Laplacian matrix as an interme-
diate step and uses the orthogonal basis that spans the con-
nectivity mode across all time. Let f (t) be the signal defined
on the vertices V at time t. The dynamic graph Fourier trans-
form of f (t) is then given by

f̂ (t)(λl) = 〈f (t),ul〉 =

N∑
i=1

f (t)(i)u∗l (i), (5)
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where ul is the lth column of U, in (4). In this work, we
compare the results from the proposed method on (5) with
that based on the eigenvectors of the Laplacian matrix LA ob-
tained from the average of the adjacency matrices over time,
Â = 1

T

∑T
t=1A

(t). We denote this transform as DGFTA.

3.2. Windowed Dynamic Graph Fourier Transform

In order to compute the DGFT of nonstationary networks, we
introduce the windowed DGFT (wDGFT) similar to short-
time Fourier transform. For a signal f(i) defined on the ver-
tices of the network and for a rectangular window of length
w, wDGFT is defined as:

F (m,λl) =

N∑
i=1

f (dm+w
2 e)(i)um

l (i), (6)

where w is the window length, and um
l is the lth column of

the factor matrix U obtained from the tensor defined over the
window of length w starting at t = m.

4. RESULTS

In this section, we first compare the dynamic graph Fourier
transform obtained from the averaged temporal network and
the proposed method. Next, we demonstrate the robustness
of the proposed transform to network anomalies. Finally, we
assess the dynamic graph Fourier transform on dynamic func-
tional connectivity networks from a cognitive control study
from EEG data.

4.1. Simulations

We simulated a weighted ring lattice network with N = 100
nodes, with average neighbor connections K = 4 for T =
80. At each time instance, the edge weights were varied uni-
formly from the interval [0.75, 1] in order to simulate slight
variations present in real networks. The signal f (t) ∈ RN×1

is defined as

f (t) =


v
(5)
10 , t = 0, . . . , 20,

v
(5)
10 + v

(12)
40 + v

(50)
60 , t = 21, . . . , 50

v
(75)
5 + v

(12)
40 + v

(35)
80 , t = 51, . . . , T,

(7)

where v
(t)
i is the ith eigenvector of the network Laplacian at

time t.
Fig. 1 shows the results from the proposed DGFT (5).

The results from DGFTA in this simulation are similar, and
not shown, since the network is stationary. In order to facili-
tate the interpretation of the results, the frequency axis is nor-
malized by the largest eigenvalue. As expected, in the interval
0 ≤ t ≤ 20 the frequency content of the network corresponds
to v(5)10 , which extends until t = 50. In the second interval,

21 ≤ t ≤ 50, there are in addition the signals correspond-
ing to eigenvectors 40 and 60. Finally, during the last interval
there are components corresponding to the eigenvectors 5, 40,
and 80.

Time (sec)

N
or

m
al

iz
ed

 F
re

qu
en

cy

 

 

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. DGFT of a ring network with N = 100 nodes and
K = 4 over T = 80 seconds. The graph signal is composed
of different components over time, which are extracted by the
proposed method.

Next, we assess the accuracy of detecting anomalies in dy-
namic networks. In this simulation, a weighted Small-world
network with average degree K = 6, p = 0.05, and N = 60
vertices was simulated for t = 1, 2, . . . , T , where T = 40.
The graph signal f (t)(n) is uniformly distributed on the in-
terval [−1, −0.9] for 1 ≤ n ≤ 30 and between [0.9, 1]
for 31 ≤ n ≤ N . An anomaly was introduced by altering
the network structure at t = 20 and t = 21, when the net-
work structure changed to a random network. The wDGFT
was computed with a sliding window of length 5. Fig. 2 (a)
and Fig. 2 (b) show the average magnitude wDGFT over 50
realizations based on the eigenvectors from the tensor formu-
lation and the eigenvectors of the average Laplacian, respec-
tively. As expected, the highest energies are concentrated at
the low frequencies since neither the signal over the graph nor
the network structure are changing considerably over time.
However, the DGFT captures the high frequency component
corresponding to the anomaly, caused by the random struc-
ture of the network, whereas averaging cannot capture this
nonstationarity in the network structure.

4.2. Dynamic Functional Connectivity Networks

The proposed method is applied to EEG data obtained from
a cognitive control experiment. In the experiment, subjects
were required to identify the correct target letter on a five-
string letter in the context of a speeded-reaction flanker task.
In this experiment, it is of interest to identify the event-
related negativity (ERN) potential, which is a brain potential
response whose peak occurs between 25-75 ms after the com-
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Fig. 2. wDGFT of a dynamic network with an anomaly com-
puted with a window of length 5 (a) wDGFT based on the ten-
sor decomposition, (b) wDGFT based on the average Lapla-
cian.

mission of errors. In particular, it has been shown [15] that
there is increased coordination among the lateral prefrontal
cortex (lPFC) and the medial prefrontal cortex (mPFC) in the
theta band (4-8 Hz). For this experiment, the EEG data was
recorded from 62 electrodes according to the 10/20 system on
a Neuroscan Synamos2 system (Neuroscan, Inc.). EEG data
was preprocessed following standard procedures for artifact
removal and volume conduction correction [16]. A total of
19 subjects were considered from this dataset. The adjacency
matrices for each subject S at time t, A(t)

S , were created by
computing the pairwise phase-locking value (PLV) based on
a previously proposed method based on time-frequency phase
synchrony [17]. For nodes i and j, the PLV measure results
in a time-frequency map, PLVi,j(t, ω). This measure is aver-
aged over the theta band (4-8 Hz) and the subjects to construct
the dynamic functional connectivity network. The Laplacian
matrix L

(t)

Â
is then computed from this average. A 3-way

tensor L ∈ RN×N×T is constructed, where N corresponds to
the number of electrodes, N = 58, and T to the total number
of time points, T = 52 corresponding to the interval from
0-75 ms. The tensor L is decomposed following (4) and the
wDGFT with a sliding window of length 25 ms is computed.

As observed in Fig. 3, the spectral energy is high around
the ERN time interval, specifically in the low frequencies.
The presence of high energy at low frequencies within the
ERN interval reflects that during this time the graph signal is
smooth with respect to the underlying network structure. In
addition, the eigenvectors provide information about network
structure. Fig. 4 shows the 8th eigenvector corresponding
to t = 0.022 ms. Peaks from this figure identify electrodes
FPz, F1, FC1, and Cz as those contributing to the high energy
shown at that particular frequency at t = 22 ms. This is con-
sistent with findings from previous works which relate lateral

Time (seconds)

E
ig

en
va

lu
e 

In
de

x

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

5

10

15

20

25

30

35

40

45

50

55

0

10

20

30

40

50

Fig. 3. wDGFT of the ERN dFCN over the interval 0-75 ms.
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Fig. 4. Eigenvector corresponding to the eight eigenvalue at
t = 22 ms as a function of electrodes.

and central regions to be relevant during the ERN.

5. CONCLUSIONS

In this paper, a dynamic graph Fourier transform based on the
common basis obtained from the Tucker decomposition of the
temporal network Laplacian tensor has been introduced to as-
sess nonstationary networks. The proposed method allows us
to determine network anomalies across time. These instanta-
neous anomalies may be missed when the basis is obtained
from the Laplacian of the average adjacency matrices across
time. Furthermore, the proposed method was applied to EEG
data from a cognitive control study to determine the brain re-
gions that are highly involved in the ERN and to better un-
derstand the smoothness of the network during ERN. Future
work will concentrate on extending the proposed method to
detect nonstationarities in both the network structure and the
graph signals, simultaneously.
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