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ABSTRACT
Tensor factorisation is a decomposition method for high di-
mensional data that is used to estimate the prominent factors
in some signal. Recently it has been employed with success
in the biomedical fields. Regularised tensor factorisation at-
tempts to alleviate overfitting and small sample size estima-
tion errors by constraining the obtained solution to satisfy
some metric. In this work, we provide a novel extension to the
theory of graph regularisation for regularising multiple graphs
and we employ graph regularised tensor factorisation on an
electroencephalogram (EEG) dataset. We utilise brain con-
nectivity networks as the basis of our graphs. Subsequently,
we perform graph regularised tensor factorisation on the EEG
data in order to reduce the noise and interference inherent to
the EEG. Furthermore, we employ custom graphs that incor-
porate prior knowledge of our dataset. We demonstrate the
efficacy of the algorithm theoretically and on some real EEG
examples. Further applications of the algorithm can be neu-
roscience applications where there is prior knowledge of the
relations between the data and in general in network science
for datasets that can be expressed as tensors.

Index Terms— tensor factorisation, graph, regularisa-
tion, EEG

1. INTRODUCTION

Tensor factorisation has found many applications in several
areas such as antenna array processing, blind source sepa-
ration, biomedical signal processing, feature extraction, and
classification [1]. A tensor is a multi-way representation of
data or a multidimensional array. Each dimension in the ten-
sor is called a mode or a way. Using tensor factorisation, the
true underlying structure of that data can be preserved. Tensor
factorisation methods have been shown to be powerful for de-
scribing signals which in general change in time, frequency,
and space. Tensor analysis can provide a good way to dis-
cover the main features of the data and extract the hidden un-
derlying information especially in the case of having big data
size.

Several tensor based methods have been suggested for
decomposition and multi-way representation of data. The
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PARAFAC decomposition [2, 3] is one of the common ten-
sor factorisation methods which is a generalisation of singular
value decomposition (SVD) to higher order tensors. Using the
Parafac model, the data are decomposed into a sum of rank-1
tensors of lower dimensions than the original data. Therefore,
as suggested in [4], it can be employed to compress the high
dimensional data and extract their significant features.

The application of tensor decomposition can be signif-
icant for biomedical signals, such as EEG, where many
transient events and movement related sources and artifacts
are involved and most sources are inherently nonstationary.
Moreover, the related brain neural process exhibit specific
space-time-frequency locations. EEG signals in particu-
lar, consist of multichannel recordings with good temporal
resolution which subsequently offers good time-frequency
resolution. The application of tensor analysis is then logical
and the data can be factorised into its space, time and fre-
quency modes [5]. Tensor factorisation has been also applied
to multi-subject data where the data can be factorised in the
group level, identifying the common components [5, 6].

Tensor factorisation has been employed in brain connec-
tivity studies primarily with the aim of dimensionality reduc-
tion or detection of dynamic changes [7, 8]. Graph theory
has found applications in many scientific fields in an attempt
to analyse interconnections between phenomena, measure-
ments, and systems [9]. A graph consists of a set of nodes
and edges describing the connections between the nodes. The
edges of weighted graphs describe the strength of the con-
nections. Graphs have been extensively used in a variety of
applications in network science such as biological networks,
brain networks, and social networks [10, 11, 12, 13]. In brain
networks, graphs have been used to describe the brain connec-
tivity [14] which is a measure of the functional and structural
integration of the brain.

In this work we combine tensor factorisation and graph
theory in an attempt to enhance the capabilities of tensor ana-
lyis for EEG data. We use graph regularised tensor factori-
sation of a four mode tensor (space, frequency, trial, epoch
1) in order to denoise the EEG and drive the decomposition
process based on prior information. Graph regularisers were
first theoretically proposed in [15], with applications in matrix

1We differentiate between trials, each repetition of the stimuli that pro-
duce the brain response, and epoch, the different periods within a trial
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factorisation [16, 17] and also tensor factorisation [18]. By
using graph regularisation on the frequency mode the tensor
components obtained through factorisation will essentially be
constrained to satisfy the properties of the underlying brain
network. Similarly, in the epoch mode, the relations between
the different time periods can be incorporated into the fac-
torisation process. In section 2, we describe the theory be-
hind tensor factorisation. Section 3, introduces the concepts
of graphs and graph regularised tensor factorisation. Further-
more, we describe our extension to graph regularisation for
multiple graphs. Section 4 shows experimental results and
Section 5 concludes the paper.

2. TENSOR FACTORISATION

Tensor factorisation was introduced in [19] and later refined
in [20, 21]. It is a generalisation of singular value decomposi-
tion (SVD) to higher dimensions. The PARAFAC model [2],
factorises a tensor into a sum of rank-1 tensors. As an exam-
ple, in a four-way Parafac model, each element of a four-way
tensor X is factorised intoN components in all modes similar
to the SVD as:

X =

I∑
i

A(i) ⊗ B(i) ⊗ C(i) ⊗ D(i) (1)

where ⊗ refers to the outer product operation. It can also be
expressed in mode-i multiplications as:

X = J×1 A×2 B×3 C×4 D (2)

where ×i refers to tensor-matrix multiplication in the direc-
tion of its ith slab [22]. The tensor J is a tensor with ones at
the superdiagonal entries and zeroes everywhere else.

The matrices A,B,C,D are estimated in an alternating
least squares fashion by fixing all matrices except one and
solving an ordinary least squares problem:

argmin
A
||X− J×1 A×2 B×3 C×4 D||2F (3)

and similarly for B,C,D. For detailed descriprion of the al-
gorithms involved in tensor factorisation refer to [2, 22].

3. GRAPH REGULARISED TENSOR
FACTORISATION

3.1. Graph Signals

A weighted graph G = (V, E ,W) is a structure defined by a
finite set of nodes (or vertices) V with |V| = n, a set of edges
E of the form (vi, vj) ∈ E with |E| = n2 − n and a weighted
adjacency matrix W with wii = 0 ∀ i. The entries wij in
the weighted adjacency matrix W (weight matrix from now

on) indicate the strength of connection between nodes. We
assume that networks are normalised, i.e. wij ∈ [0, 1].

A signal y ∈ Rn can be defined over a graph G such that
each element of the signal corresponds to a node. That way
the relation between the signal elements can be described by
the elements of the weight matrix W.

3.2. Graph regularised tensor factorisation

A regulariser is a function that penalises deviations according
to some metric. There are numerous applications in the signal
processing and machine learning fields. As described in [15],
a graph regularising function is of the form:

R(A,L) = tr{AT LA} (4)

where L is the Laplacian of a graph G i.e. :

L = D−W (5)

with D a diagonal matrix containing the degrees of each node
of the graph in the diagonal. The matrix A can be a set of sig-
nals {y} defined over the graph and are placed on the columns
of A. In this work, we focus on A being a mode of the tensor
X. The regulariser can equivalently be written as:

R(A,W) =
∑
i,j

Wij

N∑
n=1

(Ai,n − Aj,n)
2 (6)

This implies that when a connection Wij between nodes i
and j is large, the differences between corresponding entries
of A will be accentuated while for low or zero values of Wij

the converse is true. Therefore, the minimisation of such a
function penalises large differences between the ith and jth
elements of a mode’s components when the network has high
values on the corresponding nodes.

The graph regularised tensor factorisation algorithm is
similar to the original alternating minimisation algorithm
with the addition of the regularisation function [18]:

argmin
A
||X− J×1 A×2 B×3 C×4 D||2F + λR(A,L) (7)

which results in the following sylvester equation [18, 23]:

AZT Z + λLA = XZ (8)

where Z = (B ◦ C ◦ D).

3.3. Multiple graph regularisation

In this work, we provide an extension to the conventional for-
mulation by providing a way to regularising the columns of
A separately with different graphs. That is desirable since we
want to have different components of each mode correspond
to different brain connectivity networks. This can be accom-
plished in two ways.
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Firstly, by defining a regulariser that operates on single
columns as such:

R1(An,L) = tr{AT
nLnAn} (9)

That way, each column of A, can be regularised to a different
connectivity graph. This type of regulariser is implemented
by tensor factorisation that estimates individual components
in a deflation procedure [24].

Secondly, we can operate directly on the original regu-
lariser by incorporating the single entry matrix Skl with a sin-
gle entry at the kth row and lth column. This is formulated
as:

R2(A,L) = tr{SiiAT LASii} (10)

where in this case only the ith component of mode A is reg-
ularised to the connectivity network. Since in our work we
desire to regularise multiple components this can be accom-
plished by:

R2(A, {L1 . . .Ln}) =
N∑

n=1

tr{SnnAT LnASnn} (11)

In this case R2 replaces the last term of Eq. (7). This leads to
the following generalised sylvester equation:

AZT Z + λ

N∑
n=1

LnASnn = XZ (12)

This form can be converted to the following [23]:(
ZT Z⊗ I +

N∑
n=1

(Snn ⊗ λLn)

)
vec(A) = vec(XZ) (13)

where ⊗ is the kronecker product and vec is the vectorisation
operator. This can be easily solved for A.

3.4. Data tensorisation

EEG signals were recorded for 12 patients with mild cognitive
impairment (MCI) and 19 controls while they performed two
visual short term memory tasks. A Shape and a Shape-Colour
binding task. The EEG data was collected using NeuroScan
version 4.3. The EEG was sampled at 250 Hz. A bandpass
filter of 0.01-40 Hz was used. 128 EEG channels, corrected
for ocular artefacts using ICA, were recorded relying on the
10/20 international system. More information regarding the
dataset can be found in [25].

Each subject’s data were formed into a 4-mode tensor in
spatial (128 electrodes), frequency (15 frequency points of
2Hz bins), epoch (5) and trial (approximately 50 per subject)
modes. Epochs indicate the temporal subdivision of trials. We
chose 5 overlapping epochs of around 450ms to have a small
temporal resolution while enabling a good frequency resolu-
tion. Tensor factorisation was performed with PARAFAC and
with the selection of 6 components per mode (N = 6).

4. RESULTS

4.1. Error reduction

In Figure 4.1 we show the group average error reduction of the
regularised tensor factorisation algorithm for various penalty
parameters λ. We split the data of each patient into train and
test sets. The training data of each subject was used to obtain
connectivity graphs for each of the 5 epochs. Connectivity
was estimated with the imaginary part of coherence [26]. We
used those graphs to regularise the spatial mode of the tensor
factorisation on the test set. This resulted in a reduction of
around 5% in test error. Similarly in Fig 4.1 we show the
value of the regularisation function as λ increases.
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Fig. 1. Group average error ratio between the denoised data
and the training average as a function of the regularisation pa-
rameter. Each subject’s data were half split in a train set where
the graphs were learned and a test set where the factorisation
was performed.
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Fig. 2. Group average of the value of the regularisation term
as a function of the regularisation parameter.
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Fig. 3. Group averages of the obtained components of the spatial mode of the 4-mode tensor. The components were regularised
separately with graphs that penalised differences between the labeled brain regions and the rest and enhanced the similarity
within the labeled brain region. For example, the top left component was regularised to a graph that penalised big differences
between the back and the rest of the brain while forcing the elements of that region to be similar to each other. C denotes
controls, P patients while B denotes the binding task and S the shape task. The colorbar ranges are the same for all figures.

4.2. Custom designed graphs based on electrophysiologi-
cal a-priori

An important application of graph regularised tensor factori-
sation, apart from error reduction, can be the driving of the
factorisation procedure by a-priori information. Similarly, as-
sumptions about the data can be tested by providing graphs
that describe the expected interrelations. In our Altzheimer’s
dataset the two tasks are expected to produce different brain
responses in different brain regions. More specifically, it is
expected that there is greater strength in connection between
the back and front of the brain [25]. We created 5 custom
graphs, the first four concentrating into producing compo-
nents that are focused on a single region (back-right-front-
left) and the fifth one that aims to extract a component that
indicates a network between the frontal and rear areas of the
brain. The 6th component was not regularised. The results of
this experiment are shown in Figure 3.

5. CONCLUSIONS

We developed an algorithm that performs graph regularised
tensor factorisation based on brain connectivity graphs. We
provided an extension to graph regularisation by allowing dif-
ferent graphs to regularise the various components of a ten-
sor’s mode. In general, our methodology can be incorporated
in any dataset where we expect or desire that the different
components of a mode to exhibit a specific structure.

We based our results on an Altzheimers EEG dataset
where we obtained the connectivity graphs either from the
data itself or by designing connectivity graphs that test prior
clinical assumptions. In the first case, the algorithm resulted
in reducing the noise inherent to any EEG dataset in a train-
test split of the data. In the second method we designed
graphs that express the a-priori connectivity assumptions of
the data. The algorithm was able to pick up differences be-
tween the two different tasks involved in the dataset. The
clinical usefulness of such a method is shown due to the fact
that prior knowledge in the design of the graphs led to find-
ing the expected differences between the groups and tasks.
Namely, that the shape-colour binding task exhibits larger
power in the frontal and back regions of the brain than the
shape task.

Further applications of the algorithm can be found in ar-
eas that information regarding the relations between the data
are known or assumed. Examples can range from functional
magnetic resonance imaging studies where networks are more
robust and localised. Also, studies in high dimensional social
and biological networks can benefit from such a method by
regularising the extracted data by known networks.
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