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ABSTRACT

Blood vessel extraction from retinography images is useful
for detection of many retinopathies. In this paper we pro-
pose a way to improve blood vessel detection by use of Fuzzy
Mathematical Morphology (FMM) operators. The proposed
pipeline, although simple, was found to have the highest accu-
racy on the STARE dataset, and second highest on the DRIVE
dataset. We also present a parallel implementation of the
FMM operators, in OpenCL, up to about 500 times faster than
their counterpart in C++.

Index Terms— Fuzzy Mathematical Morphology, Retinog-
raphy, OpenCL, Segmentation

1. INTRODUCTION

Blood vessel extraction from retinography images is useful
for detection of many retinopathies. Among the retinopathies
are glaucoma, arteriosclerosis [1], diabetic retinopaty (DR)
and age-related macular degeneration (AMD) [2].

A few works do not rely on lesion and vessel segmenta-
tion, as the work by Agurto [2]. These are known as top-down
approaches. On the other hand, bottom-up approaches, based
on lesion and vessel detection, are much more common.

Many methods have been proposed to detect blood ves-
sels in the retina. In the literature, the best results we could
find use approaches based on matched filters to detect the
vessels [3, 4, 5, 6, 7], based on centerlines [8, 9, 10], curvelet
transforms [11, 7], supervised learning [12, 13, 14, 15],
graph-cut [16] and region growing [17].

In this paper we propose a way to improve blood vessel
detection by use of Fuzzy Mathematical Morphology (FMM)
operators. The proposed method is very simple, and does not
require training as the supervised methods, nor different types
of masks, as the matched filter approaches. In spite of sim-
plicity, is among the most accurates in literature. We also
present a parallel implementation of the FMM operators, in
OpenCL, much faster than their conterpart, in C++.

The FMM operators were implemented as a module of the
library VisionGL [18, 19]. VisionGL is an open source library
that helps creating image processing operators and systems by
generating automatically wrapper code and optimizing image
transfers between RAM and GPU.

2. BACKGROUND

To understand the proposed algorithm, a brief description of
the used operations is given in this section.

2.1. Mathematical Morphology

Mathematical Morphology (MM) is a theoretical framework
widely used in image processing problems. Provides a broad
range of tools used in microscopy, document procesing, in-
spection, pattern recognition, robot vision among other areas.
Is based on probing images by small geometric patterns called
structuring elements. The most basic operations in MM are
the erosion and its dual, the dilation [20].

Mathematical morphology was first described in binary
images and later generalized to gray-scale images. An erosion
by a flat structuring element is defined by

(f 	 S)(x) = min{f(x+ z) : z ∈ S} (1)

where f is a gray-scale input image, S is a set of pixel coordi-
nates centered at origin, x are the coordinates of a pixel in the
input image, and z are the coordinates of a pixel in S. This
definition can be applied to binary images if they are consid-
ered a particular type of gray-scale images with pixel values
in the set {0, 1}. Similarly, the dilation of f by S is defined
by

(f ⊕ S)(x) = max{f(x− z) : z ∈ S} (2)

A useful operator, defined as a composition of a dilation
and an erosion, is the closing. Closing is used to close small
holes and narrow valleys, and is defined by

f • S = (f ⊕ S)	 S (3)

Other useful operations is the closing top-hat (black-hat).
Black-hat leaves only the narrow valleys of the input image,
and is defined by

f •̂ S = (f • S)− f (4)

To understand the reconstruction operations, we must de-
fine the operation of conditional dilation. A dilation of f by
S conditioned by g is given by

f ⊕g S = (f ⊕ S) ∧ g (5)
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where ∧ denotes the pixewise minimum of two images.
The reconstruction operations known as opening by re-

construction consists on eroding the input image f and then
dilating the result conditioned by f until stabilization, i.e., the
output of a dilation is the same of its input. Can be formalized
as

f ◦̃ S = ((f 	 S)⊕f S)∞ (6)

These operations can be generalized to Fuzzy Mathemati-
cal Morphology, which will be defined in the next subsection,
by replacing the dilation and erosion operations.

2.2. Fuzzy Mathematical Morphology

Fuzzy Mathematical Morphology (FMM) is a generalization
of MM that combines it with fuzzy logic. Usually FMM im-
age processing gives better results in noisy images [21]. The
basic operations of erosion and dilation are defined in a dif-
ferent way. Fuzzy dilations are defined by

(f ⊕F S)(x) = max
z∈S
{C(f(x+ z), S(z))} (7)

where C is a conjuntion operation. Similarly, fuzzy erosions
are defined by

(f 	F S)(x) = min
z∈S
{D(f(x+ z), 1− S(z))} (8)

where D is a disjunction operation. Please notice that the in-
put image is normalized, by a linear transformation, to the
dynamic interval [0, 1]. A grayscale value with eight bits, for
example, with dynamic range in {0, 1, ..., 255}, would be nor-
malized by dividing it by 255. Structuring elements, instead
of a set of pixels as seen in Subsection 2.1, are a small im-
age. Table 1 shows eight types of FMM and respective con-
junctions and disjunctions. More details about FMM and its
properties are thoroughly discussed by Bouchet et al [22, 21].

3. METHOD

In this work was developed a pipeline for segmenting blood
vessels in retinal images with FMM operations. The general
steps of the pipeline are: green channel extraction, mask cre-
ation, Gaussian blur, black-hat, thresholding and opening by
reconstruction.

The first step, green channel extraction, is very common
when dealing with retinography images. In red and blue chan-
nels, the vessels are not as evident as in green channel, so,
these two channels are discarded, and only the green channel
is used in the process. An example of the three channels after
separation is shown in Figures 1(a), 1(b) and 1(c).

It is important to create a mask that separates the region of
interest from the external part of the image, which should be
ignored. The mask is created, as soon as the green channel is

obtained, by a simple threshold with constant parameter equal
to the grayscale 20. Figure 1(d) shows a mask example.

Afterwards, a Gaussian blur is applied to the image to re-
duce noise. The Gaussian window is a square window con-
taining an isotropic Gaussian function. This step has two pa-
rameters: window size and Gaussian standard deviation. Fig-
ure 1(e) shows an example of blur applied to the input image
green channel.

The step after the blur is the black-hat. As can be seen in
Figure 1(e), the blood vessels are darker than the surrounding
region. To segment the blood vessels, a black-hat is used, as
described in Equation 4. In the pipeline, the black-hat opera-
tion has three parameters: the FMM method, structuring ele-
ment size, and number of dilations and erosions. Figure 1(f)
shows an example of black-hat result.

At this point, the mask, obtained in the beginning of the
process, is applied. By applying the mask we mean that the
minimum between the current result and the mask is obtained.

After that, a threshold is applied. A few different thresh-
old values were tested. After the threshold, the result can
be quite noisy, having peaks not connected to the blood ves-
sels. Figure 1(g) shows an example of threshold result and it’s
noise.

To solve this problem, an opening by reconstruction is
done. The opening by reconstruction is defined by Equation 6
The effect of this operation is to eliminate the disconnected
small peaks, and only the small details connected to the main
vessels remain in the end of the process. The parameters of
this step are two: the FMM method, and the strucuring ele-
ment size, both are the same as in the black-hat step. At this
point, another threshold is applied, with constant parameter
equal to the grayscale 1. Figure 1(h) shows the final result
after reconstruction with a fuzzy standard opening by recon-
struction.

4. RESULTS

To create our pipeline, we implemented FMM operators in
OpenCL in order to run them in the GPU. We compared the
processing times of operators implemented in OpenCL and
C++ running in the GPU and CPU respectively. Results are
shown in Table 2. Speedups between 210 and 518 times, in
Hamacher and Geometric fuzzy dilation respectively, were
obtained. The benchmarks were obtained in a Core I7 com-
puter with GPU Radeon R9 270x.

To asses the accuracy or the proposed pipeline, we tested
it with 40 images from the dataset DRIVE [23, 13], and 20 im-
ages from the dataset STARE [24]. Accuracy measures were
obtained by comparing our segmentation with the groundtruth
provided by the first specialist in DRIVE, and by Hoover in
STARE dataset.

As explained in Section 3, the pipeline is parameterized.
The parameters are six: method (id), structuring element size
(seSize), number of dilations and erosions in black-hat (nBh),
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ID Name Conjunction Disjunction

1 Standard C(a, b) = min(a, b) D(a, b) = max(a, b)
2 Algebraic C(a, b) = ab D(a, b) = a+ b− ab
3 Bounded C(a, b) = max(0, a+ b− 1) D(a, b) = min(1, a+ b)

4 Drastic C(a, b) =

 a if b = 1
b if a = 1
0 otherwise

D(a, b) =

 a if b = 0
b if a = 0
1 otherwise

5 Dubois & Prade C(a, b) = ab
max(a,b,γ) D(a, b) = 1− (1−a)(1−b)

max(1−a,1−b,1−γ)
6 Hamacher C(a, b) = ab

γ+(1−γ)(a+b−ab) D(a, b) = 1− a+b−(γ−2)ab
1+(γ−1)ab

7 Geometric C(a, b) = [ab]
1
2 D(a, b) = 1− [(1− a)(1− b)]

1
2

8 Arithmetic C(a, b) =
[
min(a,b)(a+b)

2

] 1
2

D(a, b) = 1−
[
min(1−a,1−b)(2−a−b)

2

] 1
2

Table 1. Conjunctions and disjunctions

Gaussian blur window size (wSize), Gaussian blur standard
deviation (wSd), and threshold (th). The γ used was 0.2.

The method (id) parameter selects what kind of morpho-
logical operation is used. Varies from 1 to 9, where 1 to 8 are
the fuzzy methods listed in Table 1. The method 9 refers to
the classic MM operators, i.e., non-fuzzy. Actually, the meth-
ods 4, 7 and 8 don’t give useful results, so, we will list only
the results of six methods. Morphological operations are used
in the black-hat and reconstruction steps.

The structuring element size (seSize) parameter indicates
the side in pixels of a square structuring element. It is used in
the black-hat and reconstruction steps. The tested values were
3, 5, 7 and 9. The fuzzy structuring element is an isotropic
Gaussian with σ = r/5, where the radius r = (seSize-1)/2.
The classic structuring element is a flat box.

The number of dilations and erosions in black-hat (nBh)
specifies how many times the dilation and erosion are re-
peated in the black-hat step. The effect is the same as using
a bigger structuring element, but is much faster. The tested
values were 1 and 2.

The Gaussian blur window size (wSize) parameter spec-
ifies the side of the square Gaussian blur mask. The tested
values were 3, 5, 7 and 9. The Gaussian blur standard devi-
ation (wSd) specifies the standard deviation of the Gaussian
function. The tested values were 1, 2, 3 and 4.

Finally the threshold (th) parameter specify the grayscale
values of the threshold operation done just before the recon-
struction. The tested values were 3, 4 and 5.

The tested values were selected empirically, after some
tests, in order to maximize the probability to obtain useful
results. Values that often gave bad results were ruled out. All
the possible combinations of selected values were tested.

The best results obtained with the dataset DRIVE are
listed and compared with results from other works in Table 3.
Results obtained with the dataset STARE are listed in Table 4.
In both tables are shown the true positive rate (TPR), false

ID Name GPU CPU

1 Standard 0.25 126
2 Algebraic 0.25 102
3 Bounded 0.31 137
4 Drastic 0.26 113
5 Dubois & Prade 0.54 163
6 Hamacher 0.55 116
7 Geometric 0.33 171
8 Arithmetic 0.42 198

Table 2. Processing times of a fuzzy dilation, by a 3x3 struc-
turing element, in milliseconds, on a grayscale image with
565x584 pixels

positive rate (FPR) and accuracy (ACC) of each method.
As seen in Table 3, the accuracy of the proposed methods

are better than all methods found in literature, except for one,
proposed by Kar [7]. In Table 4, the proposed fuzzy methods
are better than all the other results found in literature.

We can also see, from both tables, that results obtained
with FMM operators are slightly better than results obtained
with classic opearators, i.e., non-fuzzy.

5. CONCLUSIONS

In this work we propose a pipeline for segmentation of retina
blood vessels using MM operators, both fuzzy and non-fuzzy.
Although simple, the pipeline with fuzzy operators provides
better results than all previous publications except one. Re-
sults also show that, by replacing classic MM operations with
FMM ones, accuracy can be slightly improved.

Another contribution of this work is an open source paral-
lel implementation of FMM operators in OpenCL, up to about
500 times faster than their counterpart in C++.
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(a) Red channel (b) Green channel (c) Blue channel (d) Mask

(e) After blur (f) After black-hat (g) After threshold (h) After reconstruction

Fig. 1. Input image example and results in each step of the pipeline.

Method Year TPR FPR ACC

Chaudhuri [3] 1989 0.6168 0.0259 0.9284
Niemeijer [12] 2004 0.6898 0.0304 0.9416

Staal [13] 2004 0.7194 0.0227 0.9442
Mendona [8] 2006 0.7344 0.0236 0.9452

Soares [14] 2006 0.7285 0.0213 0.9466
Martinez-Perez [17] 2007 0.7246 0.0345 0.9344

Zhang [1] 2010 0.7120 0.0276 0.9382
Miri [11] 2011 0.7352 0.0205 0.9458

Marin [15] 2011 0.7067 0.0199 0.9452
Fraz [9] 2012 0.7152 0.0231 0.9430

Salazar-Gonzalez [16] 2014 0.7512 0.0316 0.9412
Ben-Abdallah [10] 2015 0.5879 0.0166 0.9155

Deshmukh [6] 2015 0.7120 0.0276 0.9382
Kar [7] 2015 0.7718 0.0189 0.9631

1 - Standard (5, 2, 7, 1, 5) 0.6467 0.0157 0.9550
2 - Algebraic (5, 2, 7, 1, 5) 0.6624 0.0160 0.9561
3 - Bounded (5, 2, 3, 1, 5) 0.6314 0.0128 0.9563

5 - D. & P. (5, 2, 7, 1, 5) 0.6467 0.0157 0.9550
6 - Hamacher (5, 2, 7, 1, 5) 0.6602 0.0163 0.9556

9 - Classic (3, 2, 3, 1, 3) 0.5934 0.0126 0.9531

Table 3. Comparison of vessel segmentation results on
DRIVE dataset. In parenthesis are the pipeline parameters
(seSize, nBh, wSize, wSd, th)

Method Year TPR FPR ACC

Chaudhuri [3] 1989 0.6134 0.0245 0.9384
Hoover [4] 2000 0.6751 0.0433 0.9267
Staal [13] 2004 0.6970 0.0190 0.9516

Mendona [8] 2006 0.6996 0.0270 0.9440
Soares [14] 2006 0.7165 0.0252 0.9480

Martinez-Perez [17] 2007 0.7506 0.0431 0.9410
Zhang [1] 2010 0.7177 0.0247 0.9484

Marin [15] 2011 0.6944 0.0181 0.9526
Fraz [9] 2012 0.7311 0.0320 0.9442

Kaba [5] 2013 0.6645 0.0216 0.9450
Salazar-Gonzalez [16] 2014 0.7887 0.0367 0.9441

Ben-Abdallah [10] 2015 0.6145 0.0162 0.9402
1 - Standard (5, 2, 7, 1, 5) 0.7163 0.0278 0.9528

2 - Algebraic (5, 2, 7, 1, 5) 0.7145 0.0255 0.9548
3 - Bounded (5, 2, 5, 2, 5) 0.5726 0.0145 0.9542

5 - D. & P. (5, 2, 7, 1, 5) 0.7163 0.0278 0.9528
6 - Hamacher (5, 2, 7, 1, 5) 0.7210 0.0273 0.9536

9 - Classic (5, 2, 7, 1, 5) 0.6901 0.0258 0.9526

Table 4. Comparison of vessel segmentation results on
STARE dataset. In parenthesis are the pipeline parameters
(seSize, nBh, wSize, wSd, th)
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