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ABSTRACT

Numerous studies have shown that brain functional connectivity pat-
terns can be time-varying over periods of tens of seconds. It is im-
portant to capture inherent non-stationary connectivity states for a
better understanding of the influence of disease on brain connectiv-
ity. K-means has been widely used to extract the connectivity states
from dynamic functional connectivity. However, K-means is depen-
dent on initialization and can be exponentially slow in converging
due to extensive noise in dynamic functional connectivity. In this
work, we propose to use an affinity propagation clustering method
to estimate the connectivity states. By applying K-means and the
new method separately, we analyzed dynamic functional connectiv-
ity of 82 healthy controls and 82 schizophrenia patients, and then ex-
plored group differences between schizophrenia patients and healthy
controls in the identified connectivity states. Both methods revealed
that group differences mainly lay in visual, sensorimotor and frontal
cortices. However, the new approach found more meaningful group
differences than K-means. Our finding supports that our method is
promising in exploring biomarkers of mental disorders.

Index Terms— functional MRI, dynamic connectivity, affinity
propagation, schizophrenia

1. INTRODUCTION

Whole-brain functional connectivity (FC) derived from functional
magnetic resonance imaging (fMRI) data has shown its power in the
study of healthy and diseased brain. Different from traditional static
FC analysis, dynamic functional network connectivity (dFNC) anal-
ysis can capture time-varying FCs among networks over tens of sec-
onds [1] [2] [3] [4]. It is expected that the inherent non-stationary
connectivity states extracted from dFNC can provide informative
biomarkers for distinguishing mental disorders.

So far K-means clustering [1], principal component analysis
(PCA) [5], as well as spatial and temporal independent compo-
nent analysis (ICA) [6] [7] [8] have been used to estimate the
reoccurring connectivity states. Among these approaches, K-
means clustering, built into the group ICA of fMRI toolbox (GIFT)
(http://mialab.mrn.org/software/gift/), is commonly used. K-means
initializes cluster centroids by random sampling and iteratively re-
fines them to minimize error. However we found that K-means is
quite sensitive to the initial choice of centroids though this prob-
lem can be improved somewhat by multiple K-means runs with
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different initialization. Also, K-means can fail to converge within
maximum number of iterations defined as termination criteria when
clustering the time-varying FC patterns, probably due to extensive
noise in dFNC. Therefore, the resulting connectivity states from
K-means may be inaccurate, which influences the effectiveness of
the subsequent biomarker identification.

Affinity propagation (AP) clustering provides an alternative ap-
proach with much lower error rates [9]. This method performs clus-
tering by using similarity measures between pairs of samples and
propagating information until a high-quality set of exemplars and
corresponding clusters gradually emerge. There are several advan-
tages of using affinity propagation (AP) over K-means. K-means is
susceptible to local minima caused by poor initialization especially
when dealing with dFNC data which has high dimensionality and
may be influenced by noise. In contrast, AP clustering simultane-
ously considers information of all samples and thus avoids the prob-
lem caused by poor initialization. Just as K-means, different distance
measures can be used in AP clustering to build the similarity matrix.
However, AP clustering does not require users to specify the number
of clusters as input; rather it can identify the number automatically
based on an input preference value, which can be chosen based on
prior information in order to estimate the connectivity states.

Recently AP has been used to cluster time-averaged connectivity
patterns from a longitudinal resting-state fMRI dataset [10] and to
identify networks from resting-state fMRI data [11], [12]. To our
knowledge, no studies used AP to analyze dynamic connectivity. In
this paper we propose to use AP clustering to estimate connectivity
states from dynamic connectivity.

2. MATERIALS & METHODS

We investigated the group differences between schizophrenia pa-
tients (SZs) and healthy controls (HCs) in connectivity states that
were identified using K-means or AP clustering method. Fig. 1 is an
outline of our work.

2.1. Materials

Resting-state fMRI data was collected from 82 HCs (age: 37.7 ±
10.8, 19 females) and 82 SZs (age: 38.0±14.0, 17 females) scanned
on a 3-Tesla Siemens Trio scanner with a 12-channel radio frequency
coil at the Mind Research Network (MRN) (see our previous work
[4] for details). The functional scans were acquired using gradient
echo planar imaging (EPI) with the following parameters: echo time
(TE) = 29ms, repeat time (TR) = 2s, flip angle = 75◦, slice thick-
ness = 3.5mm, slice gap = 1.05mm, field of view = 240mm, ma-
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Fig. 1. Overview of methods. Preprocessed fMRI data was subject
to group ICA (GICA) in order to parcellate whole brain into small
networks. Then dFNC was estimated based on the time series of
those networks using a sliding window approach. Afterwards, con-
nectivity states were estimated by performing K-means and affinity
propagation clustering methods on dFNC separately. Finally, group
differences between HC and SZ in connectivity states were identified
for each method.

trix size = 64× 64, voxel size = 3.75mm× 3.75mm× 4.55mm.
Resting state scans consisted of 150 whole brain images. During
data acquisition, subjects were asked to remain alert with eyes open
and keep their head still.

A preprocessing pipeline developed at the MRN was used to
preprocess the fMRI data [13]. The first 6 volumes from each scan
were discarded to allow T1 equilibration. INRIAlign was used to re-
align the images [14]. Then the data was spatially normalized to the
standard Montreal Neurological Institute (MNI) space, resampled to
3mm × 3mm × 3mm voxels using the nonlinear (affine + low
frequency direct cosine transform basis functions) registration im-
plemented in the SPM12 toolbox (http://www.fil.ion.ucl.ac.uk/spm),
and smoothed using a Gaussian kernel with a full-width at half-
maximum of 8mm.

2.2. Group independent component analysis (ICA) & dFNC

We performed a group ICA method in GIFT on the preprocessed
fMRI data to obtain individual functional networks and their asso-
ciated time series. First, a group-level spatial ICA was performed
using Infomax algorithm to obtain group-level independent com-
ponents [15]. Then subject-specific components and correspond-
ing time courses (TCs) were calculated based on the group-level
components using GICA1 back-reconstruction [16]. After discard-
ing artifact-related components [18], the remaining 36 independent
components (ICs) of each subject were characterized as functional
networks (Fig. 2) [17]. We post-processed the TCs of the 36 net-
works by detrending, regressing out head motion, despiking and per-
forming low-pass filtering (< 0.15Hz).

A sliding window method is the most commonly used strategy
for analyzing dynamics [1] [3] [18] [19]. In our work, a window
with size of 26 TR (52s) and step of 1 TR was used to separate

Fig. 2. Axial view of 36 networks obtained from group ICA, cate-
gorized into subcortical (SC), auditory (AUD), visual (VIS), senso-
rimotor (SM), cognitive control (CC), default mode network (DMN)
and cerebellar (CB) networks.

each TC into 118 short TCs. Each window was convolved with a
Gaussian of σ = 3 TR to obtain tapering along the edges. Then,
regarding each window, 36 × (36 − 1)/2 = 630 FCs among net-
works were estimated based on 36 networks’ short TCs in this win-
dow from a regularized inverse covariance matrix using graphical
LASSO framework [20] [21]. So, for each subject, its dFNC can be
represented by a 118 × 630 matrix. The connectivity values were
then Fisher-Z transformed [3].

2.3. Extracting connectivity states from dFNC

2.3.1. K-means clustering

K-means has been widely used to extract connectivity states from
dFNC [1] [3]. In our work, each window of each subject corresponds
to a vector of 630 FC values. At first a subset of windows were iden-
tified as exemplars based on the local maxima of standard deviation
of the 630 FCs across all windows and subjects. The number of
optimal clusters was determined as five using the gap statistic [22].
K-means was performed on the exemplar windows-related FCs us-
ing cityblock distance as the distance measure. These resulting cen-
troids were then used to initialize another K-means to cluster the FCs
from all windows of all subjects. K-means was replicated 150 times
to avoid local minima. Finally, we estimated the subject-specific
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Fig. 3. The mean of individual subject’s corresponding connectivity states across subjects for K-means and AP methods, respectively. The
occupancy (ratio of dFNC windows belonging to any state and total number of dFNC windows across all subjects, expressed as a percentage)
is also shown. States are sorted according to similarity between connectivity states estimated by two approaches.

connectivity states for each subject by averaging the associated FCs
which are in windows with the same label [4].

2.3.2. Affinity propagation clustering

Affinity propagation performs clustering by using similarity mea-
sures between pairs of samples and propagating information until a
high-quality set of exemplars and corresponding clusters gradually
emerge [9]. It takes a collection of real-valued similarities between
the data points as an input. The similarity s(i, k) between two data-
points i and k indicate how similar they are. The similarity criterion
can be general, e.g. if the goal is to minimize the squared error, the
similarity is set to a negative Euclidean distance. Rather than spec-
ifying a required number of clusters, an input real number s(k, k)
(preference) is specified for each data point k so that data points
with high s(k, k) are more likely to be identified as exemplars. If
the preference is set as a real-valued scalar, then all data-points are
treated as equally suitable exemplars. A high value of preference
results in a high number of clusters being identified and vice versa.
But preference can also be specified as a vector of the same length
as the number of data points where the preference of each data point
to be chosen as an exemplar is based on prior information. Also,
the clustering can be performed with only a small number of known
similarities between the data points.

There are two kinds of messages exchanged between samples.
The responsibility, r(i, k) is sent from data point i to candidate ex-
emplar k as a measure of how suitable point k is as the exemplar of
point i, taking the other candidate exemplars into account. The avail-
ability, a(i, k) sent from candidate exemplar k to point i measuring
how suitable k is for ito choose it as the exemplar, given support
information from other points to k. The update equation for respon-
sibilities is,

r(i, k)← s(i, k)− max
k′ s.t. k′ 6=k

{a(i, k′) + s(i, k′)} (1)

Here, s(i, k) is the input similarity between points i and k. For
k = i, the responsibility r(k, k) is set based on the input prefer-
ence s(k, k) minus the largest of the similarities between the point

and all other candidate exemplars reflecting how ill-suited it is to be
assigned to another exemplar.

The update equation for availability is,

a(i, k)← min{0, r(k, k) + max
i′ s.t. i′ /∈{i,k}

{0, r(i, k′)}} (2)

For the first iteration, the responsibilities are set to the input sim-
ilarities and the availabilities are set to zero. In later iterations, the
availabilities of some of the points drop below zero, indicating those
being assigned to other exemplars. At any point during propagation,
exemplars can be identified by combining responsibilities and avail-
abilities i.e. max{a(i, k) + r(i, k)}. The termination criteria may
be a fixed number of iterations, incremental changes in the messages
falling below a threshold or decisions staying constant for certain
number of iterations.

To apply AP to dFNC data, we first computed the similarity ma-
trix between dFNC from all windows of all subjects based on city-
block distance. For the sake of comparison we attempted to esti-
mate the same number of clusters (five) from AP as from K-means.
AP clustering was tried several times until an appropriate preference
value was found using bisection method for which the algorithm pro-
duced five clusters. Once the clusters were found, the connectivity
states were computed as the average connectivity patterns of win-
dows with the same label.

2.4. Investigation of group differences in connectivity states

For each method of estimating connectivity states, we investigated
the difference in each functional connectivity (FC) strength between
healthy controls (HCs) and schizophrenia patients (SZs) using a two-
sample t-test based on the corresponding subject-specific states.
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Fig. 4. HC vs SZ group difference in connectivity states estimated by two methods (K-means and AP approach). Two-sample t-test was
performed on each connectivity of each state between HCs and SZs to investigate group difference. T-values are shown for connectivity
where p < 0.05 (FDR corrected). The count of subjects from each group that had at least one window in each state is also shown. HCs show
significantly higher connectivity strengths than SZs where t-values are positive (red) and the opposite when it is negative (blue).

3. RESULTS

Two groups of states (five states in each group) obtained from K-
means and AP clustering are shown in Fig. 3. In all states, there
is higher (positive) correlation within VIS and SM domain. There
is also close to zero or negative correlation of VIS and SM areas
with DMN cingulate and frontal cortices. Compared to the other
states, state 1 estimated by both approach has the highest occupancy
and therefore may be the most crucial area when comparing the two
approaches.

Fig. 4 shows the t-values obtained from the two-sample t-tests
on the connectivity passing a significance level of p < 0.05 with
false discovery rate (FDR) correction for multiple comparisons
[23]. The positive (red) t-values indicate that SZ showed lower FC
strength than HC, and the negative (blue) t-values indicate that SZ
had increased FC compared to HC. Results show that although the
average states across subjects were noticeably similar between the
two methods, we found more and interesting group differences using
the AP clustering. In AP states 1 and 2, SZ group had significant in-
creased connectivity than HC group in subcortical and sensorimotor
networks. The finding is supported by results from previous studies
[3] but was absent in any of the K-means states in our analysis. Also,
across states 1-3, reduced FC strengths in SZ group between AUD,
VIS and SM networks was highly conspicuous in AP results, also
supported by previous studies [3] [24]. Furthermore, AP identified
SZ group’s abnormal connectivity in DMN regions in state 1, which
was absent in the K-means results [4].

4. DISCUSSION

Taken together, affinity propagation is a promising approach for
dFNC analysis. It does not suffer from the shortcomings of K-
means. Our work clearly indicates that the AP approach can estimate
more meaningful connectivity states than the traditional K-means
and provide more informative measures for differentiating SZ and
HC. We did not take full advantage of the semi-supervised features
of AP algorithm such as specifying preference based on prior infor-
mation. Defining an AP clustering framework applicable to dFNC
data by specifying optimal parameters such as distance measure for
similarity matrix and preference seems to be the way forward. It
will facilitate higher dimensional analysis of brain organization and
advance the study of healthy and diseased brain.
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