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ABSTRACT

In this paper, we propose a novel sparse common spatial pattern
(CSP) algorithm to optimally select channels of EEG signals. Com-
pared to the traditional CSP, which maximizes the variance of signals
in one class and minimizes the variance of signals in the other class,
the classification accuracy is guaranteed by a constraint that the ra-
tio of variances of signals in two different classes is lowerbounded.
Then, a sparse spatial filter is achieved by minimizing thel1-norm
of filter coefficients and channels of EEG signals can be further op-
timized. The original nonconvex optimization problem is relaxed
to a semidefinite program (SDP), which can be efficiently solved
by well-developed numerical solvers. Experimental results demon-
strate that the proposed algorithm can identify and discardabout
50% channels with only 1% decrease of classification accuracy.

Index Terms— Channel optimization, common spatial pattern
(CSP), EEG, semidefinite program, sparsity

1. INTRODUCTION

Brain-computer interface (BCI) is provides a method to control a
device using brain activity only[1]. In a BCI system, brain activities
are generally measured by electroencephalograph (EEG) signals that
are convenient and have a higher time resolution than fMRI [2].

EEG-based BCI is used for mental-imagery or motor-imagery
recognition. Research reported in [3] has shown that brain activities
are highly related to event-related (de)synchronization (ERD/ERS).
This event appears inμ andβ rhythms within 8-30Hz. Since EEG
signals have a very low signal to noise ratio (SNR), recognizing an
imagery task by them is difficult and it is generally regardedas a
pattern recognition process [4], which practically includes temporal
filtering, feature extraction and classification [5]. For online BCI, it
is desirable to quickly respond to input signals. Thus, using a large
number of channels indicates a slow response and a large computa-
tional cost.

Lately, some algorithms are proposed to optimize channels of
EEG signals. In [6], channel selection is embedded in the classifier
based on support vector machine (SVM). The Norm Optimization
(l0-Opt) replaces thel2-norm in SVM by itsl0-norm and recursive
feature elimination (RFE) is used to rank the channels. Thenchan-
nels are selected by the ranking result. In [7, 8, 9, 10], feature ex-
traction algorithms based on common spatial pattern (CSP) are used
to optimize channels. CSP is a method to extract features from EEG
signals. It has been demonstrated that CSP is effective in imagery
tasks of two classes [11]. In [10], the traditional CSP is used to re-
duce the number of channels. The inverse of the matrix constructed
by spatial filters is regard as patterns. Then, channels corresponding
to large absolute values of elements in the first and the last column of
patterns are reserved for feature extraction. In [1]and [5], two kinds

of regularized CSP (rCSP) based onl1/l2 andl1 norms, respectively,
are proposed to select channels and improve the classification accu-
racy. Instead of regularizing covariance matrices, the CSPobjective
function is modified by sparsity regularizers to achieve sparse filters.
In [2], a sparse spatial CSP (ssCSP) also based onl1/l2 norm is pro-
posed, where the Lagrange equations with respected tol1/l2 norm
are constructed to produce sparse filters. Comparing with the rCSP,
it obtains group-sparse filters.

In this paper, we propose a novel sparse CSP algorithm, whichis
also based on CSP. Compared with the other CSP algorithms, itaims
to optimize channels of EEG signals under a constraint imposed on
the ratio of variances of EEG signals in different classes. Experi-
mental results show that the proposed algorithm can achievebetter
classification accuracy than the other CSP-based channel optimiza-
tion algorithms using the same number of channels. The remainder
of this paper is organized as follows. In Section 2, the proposed
sparse CSP algorithm is developed. In Section 3, the performance of
the proposed algorithm is evaluated by experiments. Finally, Section
4 concludes this paper.

2. SPARSE CSP ALGORITHMS

2.1. Traditional CSP

For a binary classification task, the traditional CSP [12] can find out
a spatial filter to maximize the variance of signals in one class while
minimizing the variance of signals in the other class. To this end, the
problem is formulated as:

max
w∈RN

w
T
C1w

wTC2w
(1)

wherew represents a coefficient vector of a spatial filter,N is the
number of channels, andCi denotes the covariance matrix ofith

class data. In principle, this problem can be solved by the general-
ized eigenvalue decomposition (EVD)

C1w = λ(C1 +C2)w (2)

whereλ denotes a generalized eigenvalue ofC1 andC2, andw rep-
resents the corresponding eigenvector. Without loss of generality,
assume thatwT (C1+C2)w = 1. If we definewT

C1w = λclass1

andwT
C2w = λclass2,λclass1+λclass2 is equal to 1. Then the ob-

jective function of (1) becomesλclass1

λclass2

. A largerλ in (2) indicates
a larger variance in one class and a lower variance in the other class.
Suppose that all the eigenvalues{λi} are arranged in a decreasing
order according to their magnitudes. Their corresponding eigenvec-
tors are denoted by{wi}

N
i=1, among which the first few eigenvectors

achieve larger variances in class 1 and lower variances in class 2, and
vice versa for the last few eigenvectors. Generally, we choose the
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firstm eigenvectors and the lastm eigenvectors in{wi}
N
i=1 as spa-

tial filters to extract classification features. Using them,we further
defineWcsp = [w1, . . . ,wm,wN−m+1, . . . ,wN ].

2.2. Proposed Algorithm

Much research[1, 2, 10] reveals that one can achieve similarrecog-
nition results using fewer electrodes or channels. This observation
is very important for online BCI. On the other hand, in practice,
EEG signals of some channels are vulnerable to measurement noise,
which adversely affects the recognition accuracy. Therefore, identi-
fying important channels and removing highly noisy and irrelevant
ones may benefit the final classification. For the purposes described
above, the sparsity of spatial filters can be further taken into ac-
count. Mathematically speaking, the sparsity can be evaluated by
its l0-norm. However, the resulting problem is generally NP-hard.
In practice,l1-norm is widely used to achieve tractable solutions.

Maximizing the sparsity of spatial filters could decrease the ob-
jective value of (1). To ensure that the performance of CSP isnot be
severely affected, the following optimization problem is formulated
in the proposed algorithm as

min
w∈RN

‖w‖0

s.t.
w

T
C1w

wTC2w
≥ τ (3)

whereτ is a predefined threshold used to control the ratio of vari-
ances of EEG signals in different classes and classificationaccuracy.
By introducingW = ww

T , (3) is equivalent to

min
W∈RN

‖W‖0,1

s.t.
Tr(C1W)

Tr(C2W)
≥ τ (4)

W = ww
T

where is defined by

‖W‖0,1 =
∑

i

IA(‖Wi,:‖1) (5)

IA =

{

1 x 6= 0

0 x = 0
(6)

andWi,: denotes theith row of W. Due to the existence of the sec-
ond constraint, (4) is still a nonconvex optimization problem. Note
thatW is a positive semidefinite matrix. Therefore, we further relax
the equality constraint to a linear matrix inequality (LMI)constraint
W ≥ 0. Similarly, to overcome the nonconvexity of the objective
function of (4), we employ thel1-norm and obtain

min
W∈RN

‖W‖1,1

s.t.
Tr(C1W)

Tr(C2W)
≥ τ (7)

W ≥ 0

Tr(W) = 1

where

‖W‖1,1 =
∑

i

‖Wi,:‖1 (8)

Note that the constraintTr(W) = 1 is incorporated in (7) to remove
the ambiguity caused by the scaling ofW. Since (7) is a semidefi-
nite program (SDP), the proposed algorithm is named Semidefinite-
Program-based Common Spatial Pattern (SDP-CSP in short) inthe
rest of this paper.

For illustration, we use two spatial filters to select channels. Let
w

1 be the solution by applying the EVD on the solution to (7) using
Tr(C1W)
Tr(C2W)

. Similarly, w2 is obtained by usingTr(C2W)
Tr(C1W)

in (7). In
a spatial filter, each element corresponds to a channel. Therefore,
a channel is in effect only when the corresponding element inthe
spatial filter is nonzero. Because of the introduction of thel1-norm
in the objective function of (7), channels corresponding tozero ele-
ments in both spatial filters are discarded. As demonstratedin Fig.1
, the index of channels is discarded when corresponding element
is both zero in two filters. Parameterτ is a very important factor,
which affects the classification accuracy and the number of effec-
tive channels. In the next section, its effect will be analyzed through
experiments.

Fig. 1. Channel selection using proposed algorithm. Black boxes
indicates nonezero elements in a spatial filter, and grey ones indicate
zero elements in a spatial filter.

3. EXPERIMENT

3.1. Data description

The data used in our experiment are taken from dataset V of BCI
Competition III. Those signals were recorded with a Biosemisys-
tem using a cap with 32 integrated electrodes located at standard
positions of the International 10-20 system. The sampling rate was
512 Hz [13]. The data include 3 mental imagery tasks (i.e., left hand,
right hand, and word association with labels 2, 3, and 7, respectively)
from 3 subjects. They were continuously recorded for around7 min-
utes.

3.2. Data preprocessing

In this study, we only use the data with labels 2 and 7 from subject
one. We delete 100 points during the transition stage between dif-
ferent imagery tasks. Then we divide the remaining data into447
segments with 512 points per segment. We regard each segmentas
a sample. Finally, EEG signals are filtered by a bandpass filter with
the passband from 9 to 35 Hz.

3.3. Channel selection and feature extraction

In our experiment, the proposed algorithm is compared to theother
three algorithms (i.e., traditional CSP, ssCSP [2], rCSP [1]). To de-

termine a reasonable value forτ, τCSP =
w

T

CSPC1wCSP

wT

CSPC2wCSP
or τCSP =

w
T

CSPC2wCSP

w
T

CSPC1wCSP
is first calculated using traditional CSP filterswCSP.
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Then, we introduce a parameter to control the lower bound used in
the first constraint of (7), that is,τSDP−CSP = ρ · τCSP . To eval-
uate the performance of the proposed algorithm, parameterρ varies
from 1 to 0.4. In the traditional CSP, the first and the last spatial
filters (i.e.,w1 andwN ) are used to reduce the number of channels
directly. Specifically, we reserveh channels corresponding to the
largest absolute values of elements inw1 and, similarly, the otherh
channels inwN . In our experiment, parameterh is chose between 1
and 32 to make sure that the number of channels is within the range
from 2 to 32.

In the ssCSP [2], spatial filters are obtained by solving the fol-
lowing problem

min
wi

(1− r)(
m
∑

i=1

wiC2w
T
i +

2m
∑

i=m+1

wiC1w
T
i ) + r

2m
∑

i=1

‖wi‖1
‖wi‖2

s.t.wi(C1 +C2)w
T
i = 1, i ∈ {1, 2, ..., 2m} (9)

wi(C1 +C2)w
T
j = 0, i ∈ {1, 2, ..., 2m} i 6= j

where 2m is the number of spatial filters.
In the rCSP [1], the problem is formulated as

min
w

wCiw
T + r

‖w‖1
‖w‖2

s.t.

c
∑

i=1

wCiw
T = 1 (10)

wherec is the number of classes. As suggested in [1] and [2], the ini-
tial w is chosen aswCSP, which is the solution to the traditional CSP
algorithm. By adjustingr , different numbers of effective channels
are accordingly used by the ssCSP and the rCSP in the successive
steps of feature extraction and classification. When spatial filters are
obtained by solving (7), (9), and (10), coefficients whose absolute
values are less than 0.1% of the maximum absolute value of allthe
filter coefficients are set to zeros. Channels correspondingto zero
coefficients in both spatial filters are discarded in the feature extrac-
tion.

3.4. Classification

Features computed by spatial filters obtained by various CSPalgo-
rithms are used in classification. As suggested in [14], support vec-
tor machine (SVM) with Gaussian kernel function is adopted in the
classification of our experiment.

3.5. Results and discussion

In our experiment, we adjust the value ofρ so as to achieve different
classification accuracy and the different number of effective chan-
nels. Fig.2 indicates that classification accuracy and effective chan-
nels both increase with the increase ofρ. Actually, a smallerρmeans
smaller discrepancy between variances of different mentalimagery
tasks, thus yielding higher classification error rate. For comparison,
the classification error rate obtain by the traditional CSP using all the
channels is also depicted in Fig.2. It can be observed from the blue
line in Fig.2 that the number of effective channels decreases rapidly
from 32 to 5 with the decrease ofρ from 1 to 0.70. Furthermore, only
using about a half of channels, the classification accuracy of the pro-
posed algorithm is still close to that obtained by the traditional CSP
Fig.3 shows the spatial filters obtained from the traditional CSP and

Fig. 2. Performance of the proposed algorithm. Black line represents
the average accuracy rate obtained by the traditional CSP using all
the channels. The red line corresponds to the variation of error rate
with respect toρ; The blue line corresponds to the variation of the
number of effective channels with respect toρ.

the proposed SDP-CSP (ρ = 0.95). It can be found that the num-
ber of nonzero elements of spatial filters obtained by the proposed
algorithm is much lower than that of the traditional CSP.

The variation of the classification accuracy rate with respect to
the number of effective channels is illustrated in Fig.4. Itcan be
found that the classification accuracy drops about 1% while only
12 effective channels are reserved in the step of feature extraction.
In Fig.4, we also compare the performance of different algorithms.
When the number of channels approaches 32, the performance of
all the algorithms is close to that of the traditional CSP algorithm.
However, when the number of channels is less than 20, compared
to the other CSP algorithms, the proposed algorithm achieves about
5% improvement on the classification accuracy.

4. CONCLUSION

A novel sparse CSP algorithm is proposed in this paper. The spar-
sity of spatial filters is maximized by minimizing the l0-norm of filter
coefficients, which is replaced by itsl1-norm. To guarantee the clas-
sification accuracy of obtained spatial filters, the ratio ofvariances
of filtered EEG signals in two classes is lower bounded. However,
the resulting problem is highly nonconvex. The SDP relaxation is
employed for the purpose of computational tractability. Experimen-
tal results demonstrate that the proposed algorithm can significantly
reduce the number of channels with a limited sacrifice of classifi-
cation accuracy rate. Furthermore, using the same number ofef-
fective channels, the proposed algorithm can achieve better perfor-
mance than the other CSP algorithms.
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