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ABSTRACT

In this paper, we propose a novel sparse common spatialrpatte

(CSP) algorithm to optimally select channels of EEG sign@lsm-
pared to the traditional CSP, which maximizes the variafisggoals
in one class and minimizes the variance of signals in ther aflhss,
the classification accuracy is guaranteed by a constraantlile ra-
tio of variances of signals in two different classes is lolweunded.
Then, a sparse spatial filter is achieved by minimizingltheorm
of filter coefficients and channels of EEG signals can be &urtip-
timized. The original nonconvex optimization problem itared
to a semidefinite program (SDP), which can be efficiently eolv
by well-developed numerical solvers. Experimental resdémon-
strate that the proposed algorithm can identify and disednalt
50% channels with only 1% decrease of classification acgurac

of regularized CSP (rCSP) basedigyi, andl, norms, respectively,
are proposed to select channels and improve the classificaticu-
racy. Instead of regularizing covariance matrices, the Glgéctive
function is modified by sparsity regularizers to achievespéilters.
In [2], a sparse spatial CSP (ssCSP) also baséd/@nnorm is pro-
posed, where the Lagrange equations with respectéd/io norm
are constructed to produce sparse filters. Comparing wéthGISP,
it obtains group-sparse filters.

In this paper, we propose a novel sparse CSP algorithm, vidich
also based on CSP. Compared with the other CSP algorithais)st
to optimize channels of EEG signals under a constraint ieegpas
the ratio of variances of EEG signals in different classezpei-
mental results show that the proposed algorithm can acthietter
classification accuracy than the other CSP-based chantiglipg-
tion algorithms using the same number of channels. The redaai

Index Terms— Channel optimization, common spatial pattern of this paper is organized as follows. In Section 2, the psego

(CSP), EEG, semidefinite program, sparsity

1. INTRODUCTION

Brain-computer interface (BCI) is provides a method to oana
device using brain activity only[1]. In a BCI system, bragtigities
are generally measured by electroencephalograph (EE@Isithat
are convenient and have a higher time resolution than fMRI [2

sparse CSP algorithm is developed. In Section 3, the pegfiocmof
the proposed algorithm is evaluated by experiments. Firadiction
4 concludes this paper.

2. SPARSE CSP ALGORITHMS

2.1. Traditional CSP

EEG-based BClI is used for mental-imagery or motor-imagery©r @ binary classification task, the traditional CSP [12] fiad out

recognition. Research reported in [3] has shown that bretiniges
are highly related to event-related (de)synchronizatBRID/ERS).
This event appears im and(3 rhythms within 8-30Hz. Since EEG
signals have a very low signal to noise ratio (SNR), recdggian
imagery task by them is difficult and it is generally regardeda
pattern recognition process [4], which practically in@sdemporal
filtering, feature extraction and classification [5]. Fotioa BCI, it
is desirable to quickly respond to input signals. Thus, gisinarge

a spatial filter to maximize the variance of signals in ons<lahile
minimizing the variance of signals in the other class. Te #rid, the
problem is formulated as:

wlCiw

max ————
werRN WTCow

@)

wherew represents a coefficient vector of a spatial filthf,is the
number of channels, an@; denotes the covariance matrix

number of channels indicates a slow response and a largest@mp jass data. In principle, this problem can be solved by tmege-

tional cost.

ized eigenvalue decomposition (EVD)

Lately, some algorithms are proposed to optimize chanriels o

EEG signals. In [6], channel selection is embedded in thesdiar

based on support vector machine (SVM). The Norm Optiminatio

(lo-Opt) replaces thé-norm in SVM by itslp-norm and recursive
feature elimination (RFE) is used to rank the channels. Tdem-
nels are selected by the ranking result. In [7, 8, 9, 10]uieaéx-
traction algorithms based on common spatial pattern (C&R)sed
to optimize channels. CSP is a method to extract features BBEG
signals. It has been demonstrated that CSP is effective ageny
tasks of two classes [11]. In [10], the traditional CSP isduisere-
duce the number of channels. The inverse of the matrix asctsil
by spatial filters is regard as patterns. Then, channelesponding
to large absolute values of elements in the first and the ¢tdistmn of
patterns are reserved for feature extraction. In [1]andt{® kinds
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Ciw = \(C1 + Ca)w @
where)\ denotes a generalized eigenvalughfandC., andw rep-
resents the corresponding eigenvector. Without loss oérgdity,
assume tha” (C; + C2)w = 1. If we definew” C1w = Ajass1
andw” Caw = Aciass2, Actassi+Aetass2 IS €qual to 1. Then the ob-
jective function of (1) becomegeles<l . A larger A in (2) indicates
a larger variance in one class and a lower variance in the othss.
Suppose that all the eigenvalugs; } are arranged in a decreasing
order according to their magnitudes. Their correspondiggrevec-
tors are denoted biw; } I, , among which the first few eigenvectors
achieve larger variances in class 1 and lower varianceags &, and
vice versa for the last few eigenvectors. Generally, we shdbe
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first m eigenvectors and the last eigenvectors if{w; }/_, as spa-
tial filters to extract classification features. Using thewe, further

defineWcsp = [W1, ey Wi, WN —mb 1,y - - - ,WN}.

2.2. Proposed Algorithm

Much research[1, 2, 10] reveals that one can achieve singitang-
nition results using fewer electrodes or channels. Thieolasion
i i f line BCI. On the other hand, in preefi Tr(CaW)

Is very important for on : » NP a spatial filter, each element corresponds to a channel. efdrer

EEG signals of some channels are vulnerable to measuremisei n - 5 channel is in effect only when the corresponding elemertbén
which adversely affects the recognition accuracy. Theegfidenti-

fying important channels and removing highly noisy andl@vant
ones may benefit the final classification. For the purposexities
above, the sparsity of spatial filters can be further takdéa at-
count. Mathematically speaking, the sparsity can be eteduby
its lo-norm. However, the resulting problem is generally NP-hard which affects the classification accuracy and the numberffete
In practicel;-norm is widely used to achieve tractable solutions.

Maximizing the sparsity of spatial filters could decreasedb-
jective value of (1). To ensure that the performance of CS@idbe
severely affected, the following optimization problemasrhulated

in the proposed algorithm as
Jmin_f|wll,

. wlCiw
st — 1%
wlCow —

©)

Note that the constraifiir(W) = 1 is incorporated in (7) to remove
the ambiguity caused by the scaling\&f. Since (7) is a semidefi-
nite program (SDP), the proposed algorithm is named Semitifi
Program-based Common Spatial Pattern (SDP-CSP in shdtigin
rest of this paper.

For illustration, we use two spatial filters to select chasnket
w! be the solution by applying the EVD on the solution to (7) gsin

Tr(g—;"w"; . Similarly, w? is obtained by usin “ng&,"; in (7). In

spatial filter is nonzero. Because of the introduction ofithaorm
in the objective function of (7), channels correspondingédm ele-
ments in both spatial filters are discarded. As demonstiated).1

, the index of channels is discarded when corresponding eglem
is both zero in two filters. Parameteris a very important factor,

tive channels. In the next section, its effect will be anatythrough
experiments.

The filter w! - -
The filter w? - -

Black: Nonzero element
Grey: Zero element

The reserved
channeis index | NI I

wherer is a predefined threshold used to control the ratio of vari-
ances of EEG signals in different classes and classificatoaracy.

By introducingW = ww 7, (3) is equivalent to

Jin Wil
Tr(C:1 W)

Tr(CaW) =

.
W =ww

where is defined by

HWH[),I = ZIA(HWL: ll,)

In — 1 2#0
270 z=o0

4

®)

(6)

Fig. 1. Channel selection using proposed algorithm. Black boxes
indicates nonezero elements in a spatial filter, and grey imuicate
zero elements in a spatial filter.

3. EXPERIMENT

3.1. Data description

The data used in our experiment are taken from dataset V of BCI
Competition Ill. Those signals were recorded with a Bioseys-
tem using a cap with 32 integrated electrodes located atiatdn
positions of the International 10-20 system. The samplaig was
512 Hz [13]. The data include 3 mental imagery tasks (i.&.hind,
right hand, and word association with labels 2, 3, and 7 getsgely)
from 3 subjects. They were continuously recorded for araundn-

andW; . denotes thé*" row of W. Due to the existence of the sec- utes.
ond constraint, (4) is still a nonconvex optimization peshl Note

thatW is a positive semidefinite matrix. Therefore, we furtheaxel

the equality constraint to a linear matrix inequality (LMDnstraint ) ) )
W > 0. Similarly, to overcome the nonconvexity of the objective In this study, we only use the data with labels 2 and 7 fromestbj

function of (4), we employ thé -norm and obtain

Jin Wi,

L THCwW)
Tr(CoW) =
WwW>0
Tr(W) =1

where

Wi, =D Wi,

@)

®)
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3.2. Data preprocessing

one. We delete 100 points during the transition stage betwéde
ferent imagery tasks. Then we divide the remaining data 44tb
segments with 512 points per segment. We regard each segsient
a sample. Finally, EEG signals are filtered by a bandpassfilth

the passband from 9 to 35 Hz.

3.3. Channel selection and feature extraction

In our experiment, the proposed algorithm is compared twther
three algorithms (i.e., traditional CSP, ssCSP [2], rCSP [lo de-
wissC1wesp
wlssCawcsp

T
weseQawese s first calculated using traditional CSP filtevecse.

wl(C1wesp

termine a reasonable value for rcsp = or Tcsp =



Then, we introduce a parameter to control the lower bound irse
the first constraint of (7), that isspr—csp = p - Tcsp. To eval-
uate the performance of the proposed algorithm, pararpetaries
from 1 to 0.4. In the traditional CSP, the first and the lastiapa

filters (i.e.w1 andw ) are used to reduce the number of channels
directly. Specifically, we reservie channels corresponding to the

largest absolute values of elementsain and, similarly, the othehn
channels inw . In our experiment, parametkiis chose between 1

and 32 to make sure that the number of channels is within tingera

from 2 to 32.
In the ssCSP [2], spatial filters are obtained by solving tie f
lowing problem

m 2m 2m
W
min(1 — T)(Zwi02wiT + Z w;Ciw?) +7’Z I Hl
Wi i=1 i=m+1 i—1 lIwill,
st.wi(C1+ Co)wi =1, i €{1,2,...,2m} 9)
wi(C1+Co)wi =0, i€ {1,2,..,.2m}i #j
where 2nis the number of spatial filters.
In the rCSP [1], the problem is formulated as
min wCin +r HW||1
w l[wll,
s.t. ZwCin =1 (20)
i=1
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Fig. 2. Performance of the proposed algorithm. Black line represse
the average accuracy rate obtained by the traditional Ciig ad
the channels. The red line corresponds to the variationrof eate
with respect tq; The blue line corresponds to the variation of the
number of effective channels with respecpto

the proposed SDP-CSE € 0.95). It can be found that the num-
ber of nonzero elements of spatial filters obtained by th@gsed
algorithm is much lower than that of the traditional CSP.

wherec is the number of classes. As suggested in [1] and [2], the ini-  The variation of the classification accuracy rate with respe
tial w is chosen asvcsp, which is the solution to the traditional CSP the number of effective channels is illustrated in Fig.4.cdh be
algorithm. By adjusting-, different numbers of effective channels found that the classification accuracy drops about 1% whily o
are accordingly used by the ssCSP and the rCSP in the suezessil2 effective channels are reserved in the step of featuraaidn.

steps of feature extraction and classification. When dddtes are

obtained by solving (7), (9), and (10), coefficients whosso#te

values are less than 0.1% of the maximum absolute value diell
filter coefficients are set to zeros. Channels corresponigiragro

coefficients in both spatial filters are discarded in theuleaextrac-

tion.

3.4. Classification

Features computed by spatial filters obtained by various &g
rithms are used in classification. As suggested in [14], stpec-
tor machine (SVM) with Gaussian kernel function is adoptethie
classification of our experiment.

3.5. Results and discussion

In our experiment, we adjust the valueg$o as to achieve different
classification accuracy and the different number of effecthan-
nels. Fig.2 indicates that classification accuracy ancctfie chan-
nels both increase with the increasgoActually, a smallep means
smaller discrepancy between variances of different memtagery
tasks, thus yielding higher classification error rate. Fonparison,
the classification error rate obtain by the traditional CSiRgiall the
channels is also depicted in Fig.2. It can be observed frenblie
line in Fig.2 that the number of effective channels decreaapidly
from 32 to 5 with the decrease gfrom 1to 0.70. Furthermore, only
using about a half of channels, the classification accurétlyegro-
posed algorithm is still close to that obtained by the tiadal CSP
Fig.3 shows the spatial filters obtained from the traditi@®@pP and
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In Fig.4, we also compare the performance of different étigors.
When the number of channels approaches 32, the performdnce o
all the algorithms is close to that of the traditional CSFoathm.
However, when the number of channels is less than 20, comhpare
to the other CSP algorithms, the proposed algorithm ackialseut

5% improvement on the classification accuracy.

4. CONCLUSION

A novel sparse CSP algorithm is proposed in this paper. The sp
sity of spatial filters is maximized by minimizing the 10-moof filter
coefficients, which is replaced by its-norm. To guarantee the clas-
sification accuracy of obtained spatial filters, the rativafiances
of filtered EEG signals in two classes is lower bounded. Hewrev
the resulting problem is highly nonconvex. The SDP relaxats
employed for the purpose of computational tractabilityp&xmen-
tal results demonstrate that the proposed algorithm canifisiantly
reduce the number of channels with a limited sacrifice ofsifias
cation accuracy rate. Furthermore, using the same numbef- of
fective channels, the proposed algorithm can achieve riygttéor-
mance than the other CSP algorithms.
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