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ABSTRACT

The Apparent Diffusion Coefficient (ADC) is a quanti-
tative measure derived from MRI that is able to asses
the amount of diffusion within living tissues. It is em-
ployed to characterize different diseases and to evaluate
response to therapy. For ADC estimation, the diffusion
signal needs to be sampled using a small number of val-
ues, presenting distortions due to the aliasing and win-
dowing effect. In this work we theoretically study these
effects and propose some new robust estimators for ADC
based on the Fourier Transform of the signal.

Index Terms— ADC, aliasing, MRI, estimation,
sampling

1. INTRODUCTION

Diffusion-weighted imaging (DWI) is a magnetic reso-
nance imaging (MRI) technique that provides useful in-
formation about the motion of water in biological tissues.
Such motion is affected by the internal structure of differ-
ent tissues and therefore diffusion MRI acquisitions can
be used to characterize in vivo different properties of such
tissues. In the last decade, DWI has shown its enormous
potential in brain imaging (in the study of white matter
disorders as markers for disease, for instance), as well as
in body imaging (e.g., tumor detection, characterization,
and assessment of treatment response).

While measures in brain imaging usually have an
anisotropic nature (due to the restrictions of neural path-
ways), in body imaging, tissue characterization com-
monly follows the assumption of isotropic diffusion.
One important measure is the so-called Apparent Dif-
fusion Coefficient (ADC), a measure of the amount of
water diffusion measured in one particular voxel. The
ADC can be estimated from multiple MR images ac-
quired with increasing diffusion-weightings (“b-values”,
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in s/mm2) [1]. ADC values have shown to be accurate
indicators of tumor response to therapy[2], as well as the
severity of liver fibrosis and cirrhosis [3].

In order for ADC to become an acceptable quantita-
tive imaging biomarker, it is of paramount importance to
provide an accurate estimation of such parameter from
the data. Unfortunately, quantitative ADC mapping is
affected by multiple artifacts, including motion-related
errors [4], image distortions caused by susceptibility,
and noise-related effects [5]. Most of the proposed esti-
mation techniques in literature are precisely focused in
the reduction of these artifacts. However, there are also
other effects that seriously affect the quality of the esti-
mation, such as the number and positions of the samples
available. Due to practical restrictions in clinical settings
(time, patient motion), only a small number of b values
are usually employed. As a consequence, the obtained
signal will be affected by aliasing and windowing.

In this work we study the influence of these two is-
sues, sampling and windowing of the diffusion signal,
over its Fourier Transform (FT). These effects must be
taken into account in order to better understand the sam-
pled signal and thus to improve the estimation of the
ADC. We present closed form expressions for the FT of
the sampled signal and we use those expressions to de-
rive three different ADC estimators. Those estimators
are tested over synthetic and real data. Results here pre-
sented can also be easily extrapolated to correct other ex-
isting estimation methods.

2. SAMPLING OF THE DIFFUSION SIGNAL

2.1. The diffusion signal

In DWI, the diffusion signal at an individual voxel can be
modeled as an exponential decay as [6]:

S(b) = S0 · e−b·ADC, (1)

where S0 is the signal intensity at b = 0 (commonly
known as baseline), S(b) is the signal intensity at b, and
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ADC is the apparent diffusion coefficient. This equation
is also known as the mono-exponential model. Lately,
more complex models (such as the bi-exponential) have
been proposed in order to cope with the effect of the per-
fusion over diffusion for low b-values. For the sake of
simplicity, in this work we will confine ourselves to the
mono-exponential model. Thus, ideally, the ADC can
be derived, for any b > 0, as ADC = b−1 log(S0/S1).
However, in the presence of noise, alternative estimation
methods that use more than one single sample are pre-
ferred, being dominant those based on least squares (LS)
and maximum likelihood [5].

If we normalize eq. (1) by the baseline, we can
rewrite it as

x(b) = e−b·ADC u(b), (2)

where u(b) is the Heaviside step function, and x(b) =
S(b)/S0 is the normalized diffusion signal. The continu-
ous Fourier Transform of signal x(b) calculated over the
variable b is

X(ω) =
1

ADC + jω
, (3)

and the value for ω = 0 is

X(0) =
1

ADC
. (4)

The FT in this point corresponds with the area of x(b)

X(0) =

∫ ∞
−∞

x(b)db =

∫ ∞
0

e−b·ADCdb =
1

ADC
. (5)

However, in order to estimate the ADC a sampled version
of x(b) must be considered. As a result, the FT of the
sampling signal will differ from eq. (5).

2.2. Uniform Sampling

Let us assume that the continuous signal x(b) is uni-
formly sampled for equally spaced values of variable b,
∆b, obtaining the discrete signal x[n] = x(n · ∆b). Fol-
lowing the traditional sampling theory [7], this can be
seen as the product of x(b) with a set of delayed deltas,
obtaining a continuous sampled signal, xp(b):

xp(b) = x(b) ·
∑
n

δ(b− n∆b),

with FT:

Xp(ω) =
1

2π
X(ω) ~

∑
k

δ

(
ω − k

2π

∆b

)

=
1

∆b

∞∑
k=−∞

X(ω − kωs)

=
1

∆b

∞∑
k=−∞

1

ADC + j(ω − kωs)
,

(6)

where ωs = 2π
∆b is the sampling frequency. Since x(b) is

not a band-limited signal, the sampled signal will show
aliasing between the replicas of X(ω). This aliasing will
be significant in the case of practical ADC estimation,
where only a few samples can be considered. The result-
ing signal can be easily calculated from eq. (6):

Xp(ω) =
1

∆b

π

ωs
coth

(
(ADC + jω)

π

ωs

)
. (7)

The FT in the origin will therefore be

Xp(0) =
1

∆b

π

ωs
coth

(
ADC

π

ωs

)
. (8)

2.3. Effect of Windowing

When acquiring the different values of the diffusion sig-
nal, the effect of the windowing must also be taken into
account. The FT calculated in the previous section, see
eq. (7), assumes an infinite number of samples, which is
not the case in real acquisitions.

Let us assume that the original signal x(b) is limited
in b:

x(b) =

{
exp(−b · ADC) 0 ≤ b ≤ BM
0 b < 0, b > BM

with BM the maximum value considered for b. The FT
of the continuos signal now becomes:

X(ω) =
1

ADC + jω

(
1 − e−BM (ADC+jω)

)
. (9)

whose value for ω = 0 is

X(0) =
1

ADC
(
1 − e−BM ·ADC) . (10)

If we compare these results to those in eq. (5), we can
see that the value in the origin of the frequency space
has been reduced, precisely due to the windowing of the
signal. The wider the signal, the smaller the contribution
of BM . For the range of values employed in practice for
ADC estimation, the influence of BM is noticeable.

If we consider the sampling of the previous section
with the windowing, the FT of the sampled signal be-
comes (after some algebra):

Xp(ω) =
1

∆b

(
1 − e−BM (ADC+jω)

)
× π

ωs
coth

(
(ADC + jω)

π

ωs

)
.

(11)

The value in the origin now becomes

Xp(0) =
π

∆b · ωs

(
1−e−BMADC

)
coth

(
ADC

π

ωs

)
. (12)
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2.4. Fourier Transform of the discrete signal

The previous sections describe the effect of sampling and
windowing over the origin of the continuous TF. Alter-
natively, we can also analyze that value for the discrete
signal straight from the samples. Assuming an uniform
sampling of the signal x(b), let us refer to the discrete
signal as x[n]:

x[n] = exp(−n∆b · ADC), n = 0, · · · , N − 1.

The FT of the discrete signal is defined as X(Ω) =∑
n x[n]e−jΩn, so the value in the origin can be calcu-

lated as

X(0) =

N−1∑
n=0

x[n] =

N−1∑
n=0

e−n∆b·ADC

=
1 − e−N∆b·ADC

1 − e−∆b·ADC =
1 − e−BM ·ADC

1 − e−∆b·ADC .

(13)

Note that we have considered BM = N · ∆b.

3. APPLICATION TO ADC ESTIMATION

An immediate application of the results in the previous
section is the derivation of new estimators for the ADC.
The estimators here proposed are directly derived from
the previous study. Modifications and corrections of ex-
isting estimation methods are also possible.

The center of the Fourier space is the point with
higher SNR (because it is the maximum value of the
signal) and less affected by aliasing. Thus, any esti-
mator based on that point will likely show interesting
robustness properties. In order to estimate the ADC,
the area of the signal x(b) must be estimated from the
samples. From the sampled signal xp(b) we define the
reconstructed continuous signal as xR(b) as a low pass
filtered interpolation XR(ω) = Xp(ω) · H(ω), where
H(ω) is a low pass filter with gain ∆b at the origin
and cut frequency ωs/2, so that XR(0) = ∆bXp(0) or,
equivalently ∫ ∞

−∞
xR(t)dt = ∆bXp(0). (14)

In what follows, Sb will denote the area of the signal

Sb =

∫ ∞
−∞

xR(b)db.

The easiest way to estimate this area from the samples
would be Sb ≈

∑
k x[k]∆b, although more accurate in-

terpolations, such as splines, can be considered. We next
propose different estimators for ADC following the re-
sults from the previous section:

Aliasing model: Using the center of the Fourier space
of the signal with aliasing, as defined in eq. (8), we
can derive an estimator for ADC as:

ÂDC =
1

∆b
log

(
Sb + ∆b/2

Sb − ∆b/2

)
(15)

Aliasing and windowing model: In order to consider
both the aliasing and windowing effects, we must
use eq. (12). A least square minimization is used:

ÂDC = arg min
y

[
Sb −

(
1 − e−BMy

) π
ωs

coth
(
y
π

ωs

)]2

(16)

Discrete model: Alternatively, we employ the discrete
formulation in eq. (13), using a least square mini-
mization:

ÂDC = arg min
y

[
N−1∑
n=0

x[n] − 1 − e−BM ·y

1 − e−∆b·y

]2

(17)

4. EXPERIMENTS AND RESULTS

For the sake of illustration and validation, a series of ex-
periments will be carried out, using both synthetic and
real data. The following implementations of ADC esti-
mators are compared:

Al+T: based on the aliasing model in eq. (15), using
trapezoid functions to approximate the integral.

Al+W+T: estimator based on the aliasing+windowing
model in eq. (16) using trapezoid functions to ap-
proximate the integral.

Al+W+splines: estimator in eq. (16) using splines and
100 points upsampling to approximate the integral.

DS: estimator based on the discrete summation, eq. (17).

DS+splines: estimator based on the discrete summation
in eq. (17). The summation ofN points is replaced
by the summation of 100 points obtained by an up-
sampling using splines.

LS: Linear Least Squares estimator, as commonly em-
ployed in clinical practice.

First, in order to analyze the behavior of the esti-
mators with different parameters, we generate a syn-
thetic 1D signal following eq. (1) normalized to S0 = 1
and ADC= 10−3. The signal is corrupted with Ri-
cian noise [8] with SNR=10 and SNR=50 in the base-
line. Note that there is a great reduction of the SNR
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Fig. 1. Synthetic experiment: average error in the esti-
mation of the ADC of the different methods proposed for
different SNR, different number of samples (b values)
and different maximum value of b, BM .
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Fig. 2. (Letf) Estimation error over the ADC phantom.
(Right) Values of the ADC of the real phantom.

in the diffusion images due to the exponential de-
cay. We define three maximum values of parameter
b, BM = [2, 4, 8] · 103. For each value we obtain a
variable number of samples, from 2 to 15, obtained by
uniform sampling. We estimate the ADC for the different
configurations and calculate the relative estimation error

Error = |ÂDC−ADC|
ADC . The average for 1000 experiments

is depicted in Fig. 1. Note that in most of the cases, the
proposed estimators based on DS and Al+W show a very
good performance when compared to LS. The methods
that use splines for the interpolation are also the ones
with the most accurate results. These results are con-
sistent for different number of data points and different
SNR values.

Next, the proposed estimators were tested over real
MRI data. To that end, a phantom was created consisting
of 6 vials with agar-based oil-water emulsions (increas-
ing oil fractions 0-50%), with decreasing ADC (mea-
sured experimentally) in the range 2-1.3×10−3 mm2/s,
see Fig. 2-right. Phantom DWI data were acquired in
a 1.5T MRI Scanner (Signa Hdxt, GE Healthcare) with
a single-channel head coil, using a diffusion-weighted

echo-planar imaging pulse sequence. Acquisition pa-
rameters included: b-values 0, 250, 500, 750 and 1000
s/mm2, slice thickness: 4 mm, axial orientation, no par-
allel imaging acceleration. 32 repetitions of the same
slice were acquired, allowing for a high-quality estima-
tion considered as golden standard. ADC values were
estimated for each repetition using the same methods
as for the synthetic data, and the estimation errors are
shown in Fig. 2-left. Once more, the methods proposed
outperform the standard LS estimator in terms of accu-
racy. Due to the use of splines for interpolation, DS and
Al+W show very similar results.

5. CONCLUSIONS

The FT of the mono-exponential diffusion signal when
sampled using a limited number of samples has been
calculated. Closed-form expressions for the diffusion
signal affected by windowing and aliasing are provided,
and three new estimators have been derived based on
this analysis. Results indicate the proposed estimators to
show improved robustness with respect to the commonly
employed LS. Although these are preliminary results,
they suggest that the proper modeling of the sampled
diffusion signal can help increase the accuracy of ADC
estimation, and can be easily applied to modify or fine
tune other related methods.
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