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ABSTRACT

Accurate segmentation of retinal vessel plays an importan-
t role in the computer-aided diagnosis of eye diseases. Ex-
isting supervised methods extract features only from green
channel due to its much higher contrast between vessel and
background than in red and blue channels. However, red
and blue channels also contain useful information for distin-
guishing vessel from background. This work investigates var-
ious ways of combining information in all 3 color channels
to enhance the segmentation performance, based on which an
effective color fusion scheme is proposed in this paper. Its
performance is evaluated on two publicly available databases
DRIVE and STARE. Results demonstrate that the proposed
feature fusion with dimensionality reduction by asymmetric
PCA visibly enhances the segmentation performance consis-
tently on both databases, rendering better performance than
state-of-the-art methods in dealing with healthy and patho-
logical retinal images.

Index Terms— Retinal vessel segmentation, color fusion,
dimensionality reduction.

1. INTRODUCTION

Retinal vessel segmentation from digital fundus images is a
crucial step required for computer-aided medical image anal-
ysis, especially for the diagnosis of some ophthalmic patholo-
gies, such as diabetic retinopathy and age-related macular de-
generation [1]. However, due to the low contrast between reti-
nal vessel and background, the pathological effects of the reti-
nal diseases, and the variations in vessel diameters, accurate
retinal vessel segmentation is still a great challenging task.
Many approaches have been reported to address these prob-
lems, which can be divided into two groups: unsupervised
methods [2-7] and supervised methods [8-14].

The unsupervised methods are mainly rule-based, like
matched filter (MF) [2, 3], vessel tracking [4, 5] and de-
formable models [6, 7]. Those methods implement retinal
vessel segmentation without considering the information of
ground truths. For example, vessel tracking method tracks
vessels based on their local patterns [4]. Deformable model
focuses on capturing the shape of the retinal vessel by an
iterative adaption [6].

The supervised methods classify each image pixel into
vessel or background by training some classifiers. Staal et
al. [8] implement vessel classification by using a KNN clas-
sifier with sequential forward feature selection. In [9], fea-
ture vector is composed of the pixel intensity and 2-D Ga-
bor wavelet transformation response, and a Bayesian clas-
sifier with Gaussian mixture model (GMM) is applied for
classification. You et al. [10] classify the feature vector de-
rived from the steerable complex wavelet by SVM classifier.
Marin et al. [11] construct a 7-D feature vector consisting of
the moment-invariant and gray-level information, followed by
classification with a five-layer feed-forward neural network.
Fraz et al. [12] compute a 9-D feature vector for vessel pixel
classification with an ensemble classifier of the boosted and
bagged decision trees. Vega et al. [13] use a lattice neural
network with dendritic processing (LNNDP) to classify fea-
ture vector. Fu et al. [14] utilize a fully convolutional neural
networks (CNNs) to generate a vessel probability map.

Although approaches mentioned above exhibit good abil-
ity for retinal vessel segmentation, several aspects still need
to be improved, such as loss of thin vessels and false detec-
tion of non-vessel structures. Existing supervised method-
s extract features only from green channel, as this channel
provides the highest contrast between retinal vessel and back-
ground. In fact, other color channels also contain useful infor-
mation for retinal image analysis. For example, optic disc is
often brighter in red channel, along with a well-defined white
shape [15], leading to a distinguishable feature for optic disc
representation. In order to extract the information that is dif-
ficult to be detected in green channel, this paper investigates
four different color fusion methods and proposes to build a
robust feature space based on the feature fusion with dimen-
sionality reduction. To the best of our knowledge, this is the
first work that fuses color information to classify retinal ves-
sel. Besides, we utilize a two-step postprocessing procedure
to further improve the vessel detection rate.

The contributions of this paper are: (1) investigate four
different ways of fusing color information and based on that
propose the most effective fusion scheme, (2) improve clas-
sification accuracy by using a two-step postprocessing proce-
dure, and (3) achieve the state-of-the-art performance on two
evaluated databases.
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2. PROPOSED VESSEL SEGMENTATION METHOD

2.1. Feature extraction

The feature vector contains quantifiable measures for classifi-
er to decide a candidate pixel as retinal vessel or background.
For each pixel, we construct a 118-D feature vector, encoding
information on spatial property and local intensity distribu-
tion in 3 color channels. Many features have been widely
used for vessel representation, like Gabor transformation [9]
and line strength [12]. Besides of these well-known features,
we also propose to use other features reported on the field of
retial image analysis, e.g. the first derivative of each matched
filter [2], Frangi filter at multiple scales [16] and equalized il-
lumination features [17]. Each component of the feature vec-
tor is described as follows.
(1) Matched filter (eight features per scale, total 32 fea-
tures): Considering that the cross-section of retinal vessel
can be modeled by a Gaussian shaped curve [2], we ex-
tract features by convolving retinal images with a set of 2D
Gaussian kernels at four scales (σ=[1,2,3,4]) and four length
(L=[5,7,9,11]). To detect retinal vessel boundary, we design
another feature, i.e. the convolution of the retinal image and
the first derivative of each Gaussian kernel. This feature
for a pixel belonging to edge is non-zero, making boundary
between vessel and background distinguishable.
(2) Frangi filter (four features per scale, total 16 features):
Frangi filter [16] is a process that detects the tubular shape
in retinal images based on eigenvalue analysis of the Hessian
matrix. To better delineate retinal vessel geometrical struc-
ture, we take one vesselness measure, one Frobenius norm
and two principal curvatures at four scales as features.
(3) Equalized illumination features (four features): This fea-
ture results from an enhanced retinal map where the effect of
illumination is equalized [17]. We increase the contrast of
image and suppress the noise amplification by changing the
local window size for histogram equalization from 4 to 10 at
increment of 2.

Other features can be briefly expressed as: (4) 2-D Gabor
wavelet transformation (five features) [9]; (5) Line strength
(four descriptors per length, total 28 features) [12]; (6) Mo-
ment invariant-based features (two measures per window
size, total 14 features) [11]; (7) Two ridge measures based
on the derivatives of Gaussian kernels at four scales (two
measures per scale, eight features) [18]; (8) Morphological
top-hat transformation using structure elements with different
radius (five features) [12]; (9) Difference of Gaussian at three
scales (three features); (10) Features based on discontinuities
in gradient orientation (three features) [12].

2.2. Color fusion

Rather than merely using green channel as the previous re-
search, we investigate four color fusion methods based on d-
ifferent fusion processing levels, as shown in Figs. 1-4. Al-

though neural classifiers [19] may achieve higher accuracy,
much effort is required in parameter tuning. This work inves-
tigates the effect of color fusion and hence the same SVM
classifier [20] is used in all fusion schemes. Let Ir(x, y),
Ig(x, y) and Ib(x, y) be the input intensity of image in red,
green and blue channels, whose corresponding feature vec-
tor is fr(x, y), fg(x, y) and fb(x, y), respectively. The size of
each feature vector is M which equals to 118 in this work.
(1) Pixel intensity fusion (PIF ): This is the simplest fusion
that combines the information at the earliest stage, i.e. Ip =
[wr wg wb][Ir Ig Ib]

T . The same feature extraction and clas-
sification as those used in a single color channel is applied
in the combined intensity channel. Two common PIF meth-
ods are fusions from RGB color channels to grayscale chan-
nel (PIFg) and luminance channel (PIFl), where [wr wg wb]
is [0.299 0.587 0.114] and [0.209 0.715 0.0076], respectively.
Both pixel intensity fusion methods assign higher weights to
the green channel. Clearly, fusions at pixel intensity level are
easy to be implemented, but they ignore vessel spatial struc-
ture in each individual color channel, thus cannot consistently
improve the segmentation performance, as shown in the ex-
periment later.
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Fig. 1. Diagram of pixel intensity fusion.

(2) Decision fusion (DF ): At the last stage, fusion is the
process of merging binary classification results which derive
from SVM classifiers on three color channels. The relation-
ship between binary classification result and feature vector f
is defined by [20]

D(f) = sign(

n∑
k=1

akykG
(
fk, f

)
+ b), (1)

where ak and b are the estimated parameters. fk is the k-th
support vector whose corresponding class label is yk. An ex-
ponential kernel G is applied in this paper to map data into
the hyperplane. The binary classification results provided by
SVM are then fused using a majority voting method. Though
fusion at the decision level preserves vessel spatial informa-
tion in each individual channel, it ignores the quantitative d-
ifference among different channels.

R

G

B

Feature 

extraction

Vessel

map

SVM

SVM

SVM

Feature 

extraction

Feature 

extraction

Decision

fusion

rf

gf

bf

Fig. 2. Diagram of decision fusion.
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(3) Score fusion (SF ): Different from decision fusion that
uses only the binary classification results, score fusion incor-
porates the classification confidence level that quantifies the
reliability of a pixel classified as vessel or background. The
function of classification score is expressed by

S(f) =

n∑
k=1

akykG
(
fk, f

)
+ b, (2)

where S is the similarity score of the input f to the class-
es. In this paper, score fusion is achieved by aggregating S
with SVM classifier. The fusion at the score level takes into
account different each color channel quantitatively, but it ig-
nores the correlation information among features extracted in
different color channels.
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Fig. 3. Diagram of score fusion.

(4) Feature fusion with dimensionality reduction (FFdr): To
use the complete information in the fusion process, features
from RGB color channels are concatenated to form a new fea-
ture vector f ′ = [fr fg fb]. Obviously, this concatenation pro-
cess creates a high-dimensional feature vector, i.e. 354, three
times more than that in the single color channel. Neverthe-
less, techniques of dimensionality reduction can be applied to
solve the curse of dimensionality. Principal component anal-
ysis (PCA) is a fundamental tool of dimensionality reduction
by removing the unreliable dimensions caused by unrepre-
sentative training data [21]. However, the numbers of posi-
tive class (retinal vessels) and negative class (background) are
highly asymmetric, e.g. only 10.4% of pixels are marked as
vessels on STARE database. PCA does not effectively work
on this unbalance data because it puts a larger eigenvalue bias
on the negative class. To tackle this problem, a covariance
mixture of asymmetric PCA [22] is constructed:

Σt = γΣv + (1 − γ)Σb + Σm, (3)

where Σv , Σb and Σm are the covariance matrices of vessel
class, background class and the covariance matrix of the two
class means (also called the between class scatter matrix), re-
spectively. γ is a weighting factor to balance the two classes.
If γ = Nv/(Nv + Nb) where Nv and Nb are the numbers of
retinal vessel and background pixels, respectively, Σt is the
same as total scatter matrix used in PCA. Here, we assign a
high weight (γ = 0.5, compared with γ ≈ 0.1 for PCA) to
Σv so that the effect of the two unbalanced classes is reduced.

Eigen-decomposition on covariance mixture is performed,
Σt = ΦΛΦT , where Φ and Λ denote the eigenvectors and

eigenvalues of Σt, respectively. Asymmetric PCA (APCA)
takes eigenvectors corresponding to the largest eigenvalues
to project feature vector f to a subspace. This work uses
APCA [22] to reduce the fussed feature dimensionality from
354 to 118, the same as that of a single color channel.
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Fig. 4. Diagram of feature fusion.

2.3. Postprocessing

Misclassification exists in some special locations, e.g. lesion-
s with variation shapes, isolated points in wide vessels and
background. In this paper, a two-step postprocessing opera-
tion is proposed by analyzing the property of corresponding
regions. Firstly, the segmented vessel map is skeletonized,
followed by region growing to smooth the edge of the detect-
ed vessels. Secondly, isolated points misclassified as vessels
in background are removed while small holes completely sur-
rounded by wide vessels are filled.

3. EXPERIMENTS

The proposed method is tested on two publicly available
databases: DRIVE [8] and STARE [23]. Table 1 illustrates
the performance comparison of the 3 color channels and var-
ious color fusion schemes. It is not a surprise that the green
channel has much higher accuracy than the 2 other channels.
The two simple color fusion schemes, pixel intensity fusion
and decision fusion, fail to deliver better performance than
the best single channel consistently over the two databases.
Although the score fusion delivers better performance than
the best single channel consistently, the improvement is very
marginal. Table 1 shows that the proposed feature fusion with
dimensionality reduction outperforms all other approaches
visibly and consistently over the two databases.

Table 1. Performance comparison of color fusion methods on
DRIVE and STARE databases.

DRIVE STARE
Accuracy Sensitivity Accuracy Sensitivity

RED 93.39% 55.03% 93.27% 42.99%
GREEN 94.85% 67.64% 96.02% 70.85%
BLUE 93.36% 56.38% 90.70% 18.56%
PIFg 94.95% 68.40% 95.70% 67.61%
PIFl 94.95% 68.46% 95.85% 69.00%
DF 94.33% 61.78% 94.14% 46.52%
SF 94.91% 68.23% 96.03% 70.99%
FFdr 95.11% 73.15% 96.20% 75.91%
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Fig. 5. Segmentation results of pathological images. First to last column: original pathological image, ground truth, results
from Soares et al. [9], Marin et al. [11] and the proposed method.

Table 2 illustrates the performance comparison with
state-of-the-art methods on two databases, where the pro-
posed method achieves the best accuracy and sensitivity.
For DRIVE and STARE databases, the proposed method im-
proves segmentation performance (accuracy, sensitivity) from
(94.80% [12], 74.44% [13]) to (95.19%, 74.79%), and from
(95.45% [14], 75.48% [12]) to (96.27%, 78.44%), respective-
ly.

Table 2. Performance comparison with state-of-the-art meth-
ods on DRIVE and STARE databases.

Method Year
DRIVE STARE

Accuracy Sensitivity Accuracy Sensitivity
Hoover [23] 2000 N.A N.A 92.64% 67.47%
Jiang [1] 2002 92.12% N.A 90.09% N.A
Staal [8] 2004 94.41% N.A 95.16% N.A
Soares [9] 2006 94.61% 73.32% 94.79% 72.07%
Marin [11] 2011 94.52% 70.67% 95.26% 69.44%
You [10] 2011 94.34% 74.10% 94.97% 72.60%
Fraz [12] 2012 94.80% 74.06% 95.34% 75.48%
Vega [13] 2015 94.12% 74.44% 94.83% 70.19%
Fu [14] 2016 94.70% 72.94% 95.45% 71.40%
FFdr 2016 95.11% 73.15% 96.20% 75.91%
FFdr

∗ 2016 95.19% 74.79% 96.27% 78.44%

FFdr
∗: Proposed method with postprocessing.

The STARE database contains ten images with abnormal-
ity, like background diabetic retinopathy and central retinal
artery/vein occlusion. Classification performance (accuracy,
sensitivity) in different literatures for those pathological im-
ages are listed in Table 3. Clearly, the proposed method per-
forms better than others in handling pathological images, e.g.
producing about (0.89% [11], 3.45% [12]) improvement for
each measurement.

Fig. 5 shows segmentation results of two pathological
retinal images based on methods in [9], [11] and the pro-
posed method. Method in [9] segments more non-vessel pix-
els, especially some pathological regions like the red lesions

in second row, while method in [11] loses some structures of
retinal vessels, such as thin vessels that connect with vessel
trees. Comparatively, the proposed method can detect vessel
and background pixels more accurately, showing better per-
formance on segmentation of pathological images.

Table 3. Performance comparison on STARE pathological
images.

Method Hoover [23] Soares [9] Marin [11] Fraz [12] FFdr FFdr
∗

Sensitivity 65.87% 71.81% 62.23% 72.62% 71.91% 76.07%
Accuracy 92.58% 95.00% 95.22% 95.11% 96.02% 96.11%
FFdr

∗: Proposed method with postprocessing.

4. CONCLUSION

This work investigates various ways of color fusion to en-
hance the segmentation performance of retinal vessels, based
on which an effective fusion scheme is proposed in this paper.
The simple color fusion in the earliest stage at pixel intensity
level ignores vessel spatial structure in individual color chan-
nel and hence cannot consistently improve the segmentation
performance. Similarly, the simple color fusion in the last
stage at decision level ignores the quantitative difference a-
mong different color channels and hence performs undesir-
ably. The fusion at the classification score level performs
better than the best single channel consistently on the two
databases. However, the performance improvement is very
marginal since it ignores the correlation among features ex-
tracted in different color channels. The proposed color fu-
sion at feature level with dimensionality reduction by asym-
metric PCA shows visible performance enhancement consis-
tently on both databases, rendering better performance than
state-of-the-art methods. Moreover, the proposed method also
performs well for pathological images with different lesion-
s, making it useful for computer aided screening for patients
with eye diseases.
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