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ABSTRACT

All modern emotion theoretical views assume a role for
peripheral physiological changes during emotional experi-
ences. In this paper, we explored the correlation between
autonomically-mediated changes in multimodal bodily sig-
nals and discrete emotional states. In order to fully exploit
the information in each modality, week learners based on in-
dividual signal modalities are built and then fused to formed a
robust inference model. To validate our model, three specific
physiological signals including Electromyogram (EMG),
Blood Volume Pressure (BVP) and Galvanic Skin Response
(GSR) recorded during eight emotional states were analyzed.
Our approach showed 88.1% emotion recognition accuracy,
which outperformed the conventional Support Vector Ma-
chine (SVM) classifier with 17% accuracy improvement.
Furthermore, in order to avoid information redundancy and
the resultant over-fitting, a feature reduction method is pro-
posed based on a correlation analysis to optimize the number
of features required for training and validating each weak
learner. Despite the feature space dimensionality reduction
from 27 to 18 features, our methodology preserved the recog-
nition accuracy of about 85.0%.

Index Terms— Correlation analysis, emotional experi-
ence, fusion algorithm, physiological signals, weak learners.

1. INTRODUCTION

1.1. Study Motivation

Providing computers with emotional understanding of their
users along with their current mathematical-logical capabil-
ities is considered a breakthrough in creating more intelli-
gent and less exacerbating behaviors for machines in Human-
Computer Interaction (HCI) applications [1]. An example of
an intelligent HCI is exploiting ”feeling computers” in en-
hancing distance-education experience. In [2], a facial recog-
nition software was introduced to detect specific feelings of
students such as frustration and boredom during training ses-
sions. Among the difficult challenges in these platforms is
the ambiguity in recognizing emotions only from studying the
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taxonomy of facial behaviors. This ambiguity is partly due to
the unrecognizable facial deformations such as wrinkling of
the forehead which can express in different emotions. In ad-
dition, facial expressions can easily be manipulated, which
produce faked affect signs.

Unlike the facial expressions, physiological signals can
not be manipulated. This characteristic makes them a robust
alternative for emotion recognition. Knowledge of the nat-
ural processes that occur at different scales inside our body
can be obtained by exploring different physiological signals
and by drawing conclusions about how these biological pro-
cesses are triggered, executed and connected between each
other. In particular, the aim of this paper is to explore the
correlation between physiological changes and emotional ex-
periences in order to develop a robust emotion recognition
inference model. As authors concluded in [3], much work re-
mains before emotion interpretation by machine intelligence
can occur at the level of human abilities. When it comes to the
implementation of the emotional understanding in machines
with high-constrained computational resources, a simple but
efficient knowledge of the key features that trigger and char-
acterize human emotions could be game changing.

1.2. Related Works

Automatic emotion recognition is a field that has gained a
lot of attention in the past few decades [4, 5, 6]. Much of
the work explores diverse patterns drawn from physiological
signals to train and test several supervised and unsupervised
methods [7, 8, 9]. Recent studies show that autonomic af-
fective regulation in two direction of arousal and valance is
indexed by bodily signals such as skin conductance, respira-
tion rate, and cardiac variables [10]. Also, there are strong
evidences that physiological activity associated with psychol-
ogy or mental states can be distinguished and systematically
organized [11]. For example, electrocardiovascular, blood
volume pressure (BVP), Galvanic skin response (GSR) and
electromyogram (EMG) activities have been used to exam-
ine the dimension of pleasure, or valence (i.e, positive and
negative affect) of human subjects [12, 13, 14]. However, a
deeper understanding is needed to completely describe the re-
lation between human emotional experience and each source
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Fig. 1. Samples of electromyogram (EMG) and galvanic skin
response (GSR) for 8 emotional states obtained from [16].

of biosignals [15]. Another interesting direction to explore
within automatic emotion recognition is the optimal feature
selection, reduction, or transformation methods to cost effi-
ciently (in terms of power, speed, storage, etc.) exploit the
related information content of human PHY signals [1].

1.3. Our Contribution

The present work extracts proper attributes from three phys-
iological modalities (EMG, BVP, GSR), and feeds them to
an innovative fusion-based classifier which decodes the cor-
relation between the bodily signal expressions and different
affective categories. Fig. 1 shows a sample of EMG and GSR
obtained from [16], which were recorded over 20 minutes for
eight emotional experiences. Our automatic emotional ex-
perience decoding approach is based on the fusion of three
weak learners that are built upon features extracted from three
specific physiological modalities using a linear discriminant
analysis classifier (LDA). Then, a fusion algorithm consoli-
dates the prediction weights from each weak learner. Finally,
a feature selection approach based on correlation analysis re-
duces the complexity of the algorithm while keeping the clas-
sification performance within an acceptable range. The con-
tribution of this paper capitalizes the effect of a fusion al-
gorithm, which extracts highly relevant attributes from each
modality, and fuses the prediction outputs rather than mixing
all of the data into a single classifier. Moreover, our emo-
tion decoding system provides lower computational complex-
ity by reducing the dimensionality of each linear weak learner
through discarding highly correlated features.

2. METHODOLOGY

Fig. 2 presents the general algorithm for the proposed auto-
matic emotional experience recognition method, where given
19-day observations (training set), the objective is to recog-
nize the corresponding emotions from the remaining 1-day
observation (test set). A 20-fold with leave one fold out

cross validation was performed to reduce the observation-
dependent predication error. The algorithm implementation
was executed in MATLAB R2015b.

2.1. Database Description

Our algorithm was evaluated using PHY data obtained from
the database provided in [16], which contains recordings of
three PHY signals: Electromyogram (EMG), Blood Volume
Pressure (BVP), and Galvanic Skin Response (GSR), during
eight emotional states: (1) Baseline-No emotion (N.E.), (2)
Anger, (3) Hate, (4) Grief, (5) Platonic Love, (6) Romantic
Love, (7) Joy, and (8) Reverence. We will use these numbers
as the emotion’s IDs throughout this paper. In the experiment,
bodily signals were recorded at a sampling rate of 20Hz for a
25-minute time period over 20 days (one observation recorded
per day) from a healthy female subject [3].

2.2. Signal Pre-processing

Each physiological signal was filtered using a first order low-
pass Butterworth filter with cutoff frequency of 10Hz for
EMG, and 19Hz for BVP and GSR accordingly to the criteria
explained in [3]. Then, the signals were smoothed by com-
puting the average of the upper and lower envelope of their
corresponding filtered versions.

In order to compensate the nonlinear phase distortion in-
troduced by the Butterworth filter, specially around the cut-
off frequencies, the original Butterworth coefficients were ap-
plied to the signal using a zero-phase digital filter known as
filtfilt in MATLAB. filtfilt process the input data in both the
forward and reverse directions: after filtering the data in the
forward direction, it reverses the filtered sequence and runs it
back through the filter [17]. By this mechanism, the output
signal achieves the desired zero-phase behavior.

Finally, a min-max normalization was performed across
the 20-day measurements to avoid the effects of human ini-
tial statics in the resulting feature space. This step is highly
recommended for a robust performance of the classifier.

2.3. Feature Extraction

According to [3, 18, 19, 20, 21, 22], nine features were
extracted for each physiological signal to capture time, fre-
quency, statistical and spectral relevant characteristics of the
signals, including: (1) max value, (2) min value, (3) number
of peaks, (4) mean: first statistical moment, (5) variance: sec-
ond statistical moment, (6) kurtosis: forth statistical moment,
(7) entropy, (8) signal power, and (9) signal spectral power.

2.4. Classifier Design

Our proposed emotional experience decoding approach is
based on fusion of specialized weak learners for each of the
three physiological signals under study (EMG, BVP, GSR)
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Fig. 2. Automatic emotional experience decoding algorithm based on fusion of specialized weak learners.

as shown in Fig. 2. A linear discriminant analysis (LDA)
classifier is implemented as the weak learner due to its com-
putational simplicity and reasonable robustness, even when
the classes do not behave as normal distributions [23, 24]. The
aim of a linear discriminant classifier is to find decision rules
gi(x) in terms of the minimum total error of classification
and a monotonic transformation of the posterior probabilities
P (ei|x):

gi(x) = lnP (ei|x) for i = 1, · · · , 8. (1)

where each of the eight emotion categories is considered as a
target emotional experience class ei, and x is the set of given
features from the specific physiological signal. Assuming that
each class has multivariate normal distribution and all classes
have different mean values µi, but equal covariance matrix Σ,
by Bayes’ theorem, the joint posterior probability gi(x) for
the eight emotions can be written as a linear system:

gi(x) = Wio +WT
i x (2)

where Wi = Σ−1µi and Wio = − 1
2µi

T Σ−1µi + lnP (ei).
Note that for a single LDA classifier, x belongs to emotion
class ei if gi(x) > gj(x),∀i 6= j. Also, P (ei) implies the
prior information obtained for each emotion class through the
feature extraction of the corresponding training set.

However, in our classification design, rather than con-
cluding the emotion class ei from each LDA-based weak
learner, the output from each of the three weak learners is ex-
pressed as a weighted prediction vector of the eight emotions
[gj1, · · · , g

j
8] that the jth (j = 1, 2, 3) physiological input sig-

nal is likely to be constituted of. In turn, the three weighted
predictions from the three weak learners are consolidated in
a robust inference model by means of a fusion algorithm.

Specifically, the fusion algorithm combines the individual
weighted predictions from the three weak learners in a like-
lihood weight prediction matrix G, whose dimension is 3×8
due to the 3 physiological signals as inputs and the 8 discrete
emotional experience categories as the classification outputs.
Then, in order to consolidate all three independent decisions,
the mean vector of G across physiological signals is com-
puted to obtain [g̃1, · · · , g̃8]. From here, a discrete emotion
classification is obtained by selecting the emotion class ek for

which the maximum weight g̃k is obtained. Within this con-
cept, the idea of prediction weights can be associated with
the probability of decoding 8 discrete emotions from a given
multimodal physiological input.

3. RESULTS

To demonstrate the performance of our emotion recognition
approach, we compared its behaviour against a classical sup-
port vector machine (SVM) classifier implemented with a lin-
ear, radial basis, and polynomial kernel functions. Table 1
presents the results obtained from a 20-fold leave one fold
out cross validation, where the best accuracy of 72.5% for
the SVM classifiers was obtained through a radial basis kernel
function, and for our proposed weak learner fusion algorithm,
the accuracy summed up to 88.1%.

Moreover, a variant of the proposed weak learners algo-
rithm was implemented to reduce the feature space by means
of a feature correlation analysis. This approach does not in-
tend to increase the computational complexity as when trans-
forming the feature space to other dimensions (e.g., principal
component analysis (PCA)). In our implementation, feature
correlation analysis computes the correlation between each
pair of features in the whole set prior passing relevant fea-
tures to each weak learner, and drops those that are correlated
with a factor greater than a predefined threshold, which we
set to 0.8. As a result, from a feature space of 27 features per
observation per emotion, the reduced feature space resulted

Table 1. Recognition performance of different classifiers
Classifier Accuracy (%)
SVM - linear kernel 70.0
SVM - radial basis kernel 72.5
SVM - 1st order polynomial kernel 68.1
SVM - 2nd order polynomial kernel 70.0
SVM - 3rd order polynomial kernel 71.9
SVM - 4th order polynomial kernel 69.4
SVM - 5th order polynomial kernel 67.5
Weak learners 88.1
Weak learners & correlation analysis 85.0
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Fig. 3. True Positive Rate – TPR (solid lines) and False Posi-
tive Rate – FPR (dashed lines) curves for the 8 target emotion
experience categories.

in 18 uncorrelated features. Note that 27 features stand for
the 9 features per each of the 3 physiological signals under
study, and all those 27 features need to be in turn computed
for each of the 20 day observations during the 8 emotion seg-
ments. Under this scenario, feature reduction from 27 to 18
features per observation per emotion represents a significant
computational complexity reduction.

Within this context, the overall accuracy was preserved to
85.0%. Note that neither PCA nor LDA provide information
regarding what exact features can be removed from the feature
space to reduce complexity. The new feature space provided
by these methods still considers a linear combination of all
the original features.

3.1. Emotion Decoding

Fig. 3 shows a variant of the receiver operating character-
istic (ROC) curve, which is specialized to demonstrate true
positive rate (TPR) and false positive rate (FPR) of a multi-
class classifier. TPR represents the successful classification
rate of a given class (emotion), and FPR represents the cor-
responding misclassification rate of that class among others.
From Fig. 3, it is clear that the weak learner-based classifier
with and without correlation analysis classifier outperforms
(higher TPR and lower FPR) the SVM approach.

Also, analyzing the trends exposed in Fig. 3, we explored
which emotional sources provoked the TPR to fall below 0.9
which were hate, platonic love, romantic love, joy, and rev-
erence. We found out that reverence gets confused with hate,
platonic love with grief, hate with both baseline and rever-

ence, joy gets misclassified with romantic love, and romantic
love with anger or joy. The negative effect of the correlation-
based feature selection method on certain emotions for which
the TPR decreases surfaces one of the potential weaknesses
of this method, since it completely discards features that are
highly correlated without considering the case in which these
features may contain useful information for differentiation in
other domains as well.

3.2. Discussion

One interesting question that arises is why the LDA classi-
fier outperforms the SVM approach? Even when consider-
ing the case of SVM with a linear kernel function (which
did not achieved the best behaviour among the SVM group).
Since the data showed to be linearly separable, the SVM ap-
proach of mapping data into a higher dimensional space in
which it would be linearly separable turns out to be redun-
dant. If the data was already observed to be linearly separa-
ble, LDA represents a good approach towards classification
without overfitting the classification model [25]. The strength
of our model then is mainly due to the fusion of multiple de-
cisions provided by different weak learners each tuned for a
specific input modality.

4. CONCLUSION AND FUTURE WORK

Our proposed classification paradigm based on specialized
weak learners for each physiological signal modality re-
ported a higher recognition accuracy than the classical SVM
approach. Our algorithm also highlights modularity when
adding new modalities without compromising the overall
complexity. In fact, the proposed fusion algorithm is an alter-
native boosting approach for consolidating multiple decisions
provided by different weak learners in a strong inference
model. By working with prediction scores as outputs of each
weak learner, we are considering more than one discrete emo-
tion that a single test input is likely to be constituted of; and
this flexibility obtained from the prediction scores can be ex-
tremely relevant when a final classification decision is made
by combining the criteria provided by different learners.

Furthermore, simple methods such as feature correlation
analysis can turn out to be very practical tools to analyze re-
dundancy across the feature set. By performing this prior cor-
relation study, a fine-grained feature selection can be passed
as input to each weak learner to improve individual classifi-
cation accuracy. Also, since for each training set the suitable
features might be different, the number of selected features
for each set changes accordingly. Finally, one of the remain-
ing questions regarding feature selection is how should a pe-
nalization term be included in the algorithm to rather than
only considering the criteria of redundant information, also
contemplate the case of the confusion that overlapped infor-
mation might cause in the feature space.
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