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∗Department of Electrical and Computer Engineering
∗∗Department of Obstetrics/Gynecology, Stony Brook University Hospital

Stony Brook University
Stony Brook, NY 11794, USA

Email: {kezi.yu,petar.djuric}@stonybrook.edu, J.Gerald.Quirk@stonybrookmedicine.edu

ABSTRACT

In this paper, we propose an application of non-parametric
Bayesian (NPB) models to classification of fetal heart rate
recordings. More specifically, the models are used to discrim-
inate between fetal heart rate recordings that belong to fetuses
that may have adverse asphyxia outcomes and those that are
considered normal. In our work we rely on models based on
hierarchical Dirichlet processes. Two mixture models were
inferred from recordings that represent healthy and unhealthy
fetuses, respectively. The models were then used to classify
new recordings. We compared the classification performance
of the NPB models with that of support vector machines on
real data and concluded that the NPB models achieved better
performance.

Index Terms— Hierarchical Dirichlet process, fetal heart
rate, Gaussian mixture models, classification, non-parametric

1. INTRODUCTION

Fetal heart rate (FHR) is routinely monitored during preg-
nancy to help obstetricians examine fetal health. The main
interest is in determining if the heart rate of a fetus points to an
inadequate fetal oxygenation during labor. Adverse asphyxia
outcomes could be prevented by taking appropriate interven-
tion according to FHR patterns [1]. In clinical practice, FHR
signals are evaluated visually by physicians following guide-
lines published by various institutions such as the National
Institute of Child Health and Human Development (NICHD)
and the International Federation of Gynecology and Obstet-
rics (FIGO) [2, 3]. However, a recent study has shown that
evaluations of fetal acidosis made by obstetricians have large
inter- and intra-variability [4].

With the goal of avoiding subjectivity and maintaining
consistency, researchers in signal processing and biomedi-
cal engineering have been proposing various automated FHR
classification methods. In [5], the authors implemented the
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naı̈ve Bayes, support vector machines (SVMs) and decision
trees as classification algorithms. In [6], artificial neural net-
works (ANNs) were applied to FHR analysis, with 6 FHR
features and 6 clinical parameters as input. A more compre-
hensive study [7] explored the performance of classical ma-
chine learning (ML) classification methods including linear
regression and SVMs with different kernels and in combina-
tion with feature selection and reduction methods such as ran-
dom forest (RF) and principle component analysis (PCA).

Despite the vast use and successful application of SVMs
and ANNs in many areas, some newly proposed ML tech-
niques have proved to be more flexible and robust. Hierar-
chical Dirichlet process (HDP) mixture models [8], for in-
stance, free the classical mixture models from a fixed number
of mixing components, and they provide a way of process-
ing grouped data jointly. An example of this kind of problem
can be described as follows. Consider a collection of news-
paper articles. Each article (one group of data) is comprised
of certain number of words, which arise from different topics
(e.g., economy, politics, sports). Furthermore, let the topics
be shared within the whole corpus and let the number of top-
ics in each article vary. The goal is to find all the topics in the
corpus and their appearances in the articles, and label each
article according to a predefined criterion. In our context, the
articles are the FHR recordings, words are segments of the
recordings, topics are the components of statistical mixtures
of the segments, and labels are defined as healthy and un-
healthy.

In this paper, we extend the application of HDP mixture
models to FHR classification. We employ HDP Gaussian
mixtures (HDPGMs) to model the collection of FHR tracings
of healthy and unhealthy fetuses, respectively, and infer the
structure of the models from real data. Once the models of
the two classes are constructed, we use them for classification
of new FHR tracings.

The main contribution of this paper lies in the novelty of
applying non-parametric Bayesian models to FHR classifica-
tion. A preliminary analysis of FHR tracings using HDPGMs
was presented in [9]. Here, we extend this work to more prac-
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tical tasks of classification. In the paper we also show that the
proposed methodology has a high potential. Comparison with
an SVM method shows better performance of the HDPGMs.

The paper is organized as follows. In the next section, we
provide a brief background on the data and then describe in
detail the methodology. In Section 3, we present the specifics
of our experimental settings. The results of the new method
and their comparison with those of an SVM method are pro-
vided in Section 4. Finally, we conclude the paper with Sec-
tion 5.

2. BACKGROUND

2.1. Notation

In the problems of our interest, the observations are orga-
nized into groups and assumed exchangeable both within
each group and across groups. Specifically, let xji denote
the i-th observation in the j-th group. Then we assume that
xj1, xj2, . . . are exchangeable within group j. Furthermore,
x1,x2, . . . are assumed exchangeable at the group level
where xj = (xj1, xj2, . . . ).

We consider that each observation is drawn independently
from a mixture model. The symbol θji represents the param-
eters of the mixture component that generated the observation
xji. Finally, F (θji) denotes the distribution of xji.

2.2. Method

The hierarchical Dirichlet process (HDP) mixture model is a
non-parametric Bayesian approach to data processing. It was
designed to model grouped data where each group is asso-
ciated with a mixture model and all the mixtures are linked
through a hierarchy [8]. Here, we explain the stick-breaking
construction of the HDP and its extension to mixture models.

An HDP is a distribution over a set of random probability
measures Gj , one for each group. The probability measures
Gj have the same base measure, which is denoted by G0.
This measure is the global random probability measure of the
hierarchical process. The global measure G0 is distributed as
a Dirichlet process,

G0|γ,H ∼ DP(γ,H), (1)

where γ is the concentration parameter of the process, and
H is its base measure. The global measure can be expressed
using a stick-breaking representation by

G0 =

∞∑
k=1

βkδφk
, (2)

where δφk
is a probability measure concentrated at φk, and

φk ∼ H independently. The infinite sequence of weights β =
(βk)

∞
k=1 is distributed according to a GEM (Griffiths-Engen-

McCloskey) distribution, i.e., β ∼ GEM(γ). The weights

are mutually independent and
∑∞
k=1 βk = 1. Details on the

GEM distribution can be found in [10].
The random measures Gj are conditionally independent

given G0, with distributions

Gj |α,G0 ∼ DP(α,G0), (3)

where α is another concentration parameter, and G0 is the
base probability measure. Because G0 has support given by
the points φ = (φk)

∞
k=1, each Gj necessarily has the same

support as the base measure. Thus, the stick-breaking repre-
sentation can be written as

Gj =

∞∑
k=1

πjkδφk
, (4)

where πj = (πjk)
∞
k=1 ∼ DP(α,β) and

∑∞
k=1 πjk = 1.

Intuitively, one can think of πj being a modified set of weight
coefficients of β governed by the parameter α.

As for the HDP mixture model, within each group, the
mixture components are distributed according to Gj , thus θji
takes on the value φk with probability πjk. Let zji denote the
mixture component assignment of xji such that θji = φzji .
Given zji, the distribution of xji is F (φzji). Therefore, the
representation of the HDP mixture model can be expressed as

β|γ ∼ GEM(γ), φk ∼ H,
πj |α,β ∼ DP(α,β),

zji|πj ∼ πj ,
xji|zji, φk ∼ F (φzji).

(5)

In our experiments, we assume that F is a multi-variate Gaus-
sian distribution. This completes the description of the HDP
Gaussian mixture models.

2.3. Database

In our work, we used the open-access CTU-UHB intrapartum
cardiotocography (CTG) database [11]. This database con-
tains 552 CTG recordings, each comprising an FHR time trac-
ing and a uterine contraction (UC) signal, both sampled at 4
Hz. Additional information, including maternal data, delivery
information, fetal data and fetal outcome data are also avail-
able. More details on the data collection can be found in [12].

Real-world FHR tracings inevitably suffer from artifacts
and errors. Therefore, preprocessing the data before analysis
is necessary. In this paper, we followed the same preprocess-
ing procedures as in our previous work [9]. Samples that were
considered to be artifacts were either substituted by linear in-
terpolation or simply discarded. Figure 1 shows an example
of an FHR series before and after preprocessing.

3. EXPERIMENTAL SETTINGS

The basic idea of our approach to classification using HDP
mixture models is as follows. During a learning stage, two
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Fig. 1. Comparison between an FHR signal before and after
preprocessing.

HDP Gaussian mixture models, M0 and M1, were con-
structed using FHR recordings from healthy and unhealthy
fetuses, respectively (thus, the subscripts ‘0’ and ‘1’ refer
to models, distributions, and parameters of healthy and un-
healthy fetuses, respectively). We implemented collapsed
Gibbs samplers (proposed in [8]) to infer the parameters of
M0 and M1. Given a new FHR tracing xj , the decision
is made by comparing the likelihoods p0 = f(xj |M0) and
p1 = f(xj |M1). If p0 > p1, the FHR series is classified as
healthy and vice versa. We note that here we tacitly assume
that the priors of the fetuses were equal.

3.1. Dataset

We selected a balanced dataset from the database by the fol-
lowing criteria: an FHR recording was labeled as unhealthy if
its associated umbilical cord blood pH was less than or equal
to a threshold τ1, and labeled as healthy if the pH value was
greater than τ0. There is no consensus of the choice of τ1,
and thus we experimented with both τ1 = 7.05 as in [5] and
τ1 = 7.1 as in [6, 7]. The number of FHR recordings N in
the datasets ended up with 88 and 122 respectively.

In our experiment, only the last 30-minute data of the
FHR series were used for analysis. Each recording was di-
vided into non-overlapping segments of l seconds, where l
ranged from 10 to 30. Thus, the number of segments in each
series was m, where m = 1800/l. A feature vector xji of
dimension d was extracted from the ith segment in the jth
recording, denoted as sji(k), k = 1, . . . ,K.

3.2. Feature extraction

There is a large body of work on feature extraction from FHR
signals. Considering the nature of our model, we selected 14
features in our experiment. The features can be divided into
two categories: time domain and frequency domain features.

The time-domain features include the basic statistics of
the FHR samples: the mean and standard deviation of sji =
(sji(1), . . . , sji(K)). This category also includes standard
short-term variability (STV), long-term variability (LTI) de-
fined in [13], short-term irregularity (STI), and long-term ir-
regularity (LTI) in [14]. Finally, on the list of time domain
features we also had two standard descriptors of Poincaré
plot, SD1 and SD2, as well as complex correlation measure
(CCM), proposed in [15]. The frequency-domain features
were composed of energies in four frequency bands: very
low frequency (VLF: 0-0.06 Hz), low frequency (LF: 0.06-
0.3 Hz), medium frequency (MF: 0.3-1 Hz) and high fre-
quency (LF: 1-2 Hz), and the ratio of energies defined by
LF/(MF+HF). The frequency-domain features represent the
underlying physiological activity of either the mother or the
fetus. It is worth noting that there was no consensus on the
division of the frequency bands. In our experiments, we used
the ranges from [16]. The complete list of features is shown
in Table 1.

Table 1. List of all the features.
Category Feature

Mean, standard deviation
Time STV, STI, LTV, LTI,

SD1, SD2, CCM
Frequency VLF, LF, MF, HF, ratio

3.3. Dimensionality reduction

Before training the model, we reduced the dimension of the
feature space from 14 to q by way of principle component
analysis (PCA). Since the ranges of values in each dimension
varied largely, we first scaled these values to lie in the interval
(−1, 1). An example of a PCA result of all the data when the
number of recordings is N = 88 and the number of segments
per recording is m = 180 is shown in Fig. 2. The gray bars
are the explained variance ratios of each principle component,
and the blue line corresponds to the cumulative variance ratio.
According to the preliminary analysis of all the data, we ob-
served that in most cases, the first four principle components
would retain 95% variance. Thus we chose q = 2, 3, and 4.

3.4. Model priors

An HDP mixture model has two concentration parameters, γ
and α, as described in Section 2.2. In [8], the authors provided
an auxiliary posterior sampling scheme for γ and α. In our
experiments, the concentration parameters were given gamma
priors, γ ∼ gamma(1, 1) and α ∼ gamma(10, 1), and they
were sampled during inference. Thus, we did not need to
specify any parameters before learning the model. The only
variables that we had to choose were the segment length l and
the reduced dimension of the feature space q.
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Fig. 2. An example of the PCA results.

3.5. Performance assessment

The performance of the classifiers was quantified by the
weighted relative accuracy (WRA) [17]. WRA is an un-
biased accuracy measure defined as WRA = 4 × cost ×
(TPR− FPR)/(1 + cost)2, where TPR and FPR denote the
true and false positive rates. In this study, we assigned the
cost to be equal to 1.

We used the 5-fold stratified cross-validation (CV) method
for performance assessment, and the results were averaged
across each iteration.

4. RESULTS

In this section, we provide the performance of HDPGMs and
compare it to that of an SVM-based method, which achieved
the best performance both in [5] and [7].

4.1. The HDPGM-based method

As described in Section 3.1, we experimented with two differ-
ent thresholds τ1 that delineate the unhealthy and the healthy
groups of fetuses. By setting τ1 = 7.05, the number of FHR
recordings used for analysis N = 88, and for τ1 = 7.1,
N = 122. After segmentation, feature extraction and PCA,
the dataset was transformed to N groups of data, each group
having m observations of dimension q. In each iteration of
the CV, 80% of the recordings were used as training data, and
the rest were for validation.

The true negative rate (TNR) and true positive rate (TPR)
were also calculated from the testing dataset. The classifica-
tion performance of HDPGMs are shown in Table 2, with the
best performance highlighted in bold font.

4.2. The SVM-based method

In testing the SVM-based method, we used the same two
datasets. We first extracted the same 14 features described in
Section 3.2 from the last 30-minute data of each FHR series,

Table 2. Performance of HDPGMs
N q l TPR TNR WRA

10 sec 0.753 0.844 0.597
2 20 sec 0.708 0.822 0.531

30 sec 0.681 0.844 0.525

10 sec 0.706 0.800 0.506
88 3 20 sec 0.636 0.844 0.480

30 sec 0.655 0.867 0.522

10 sec 0.700 0.733 0.433
4 20 sec 0.656 0.800 0.456

30 sec 0.642 0.703 0.344
10 sec 0.637 0.753 0.390

2 20 sec 0.606 0.769 0.376
30 sec 0.654 0.754 0.408

10 sec 0.654 0.704 0.358
122 3 20 sec 0.655 0.721 0.376

30 sec 0.554 0.803 0.356

10 sec 0.622 0.720 0.342
4 20 sec 0.604 0.738 0.342

30 sec 0.587 0.719 0.306

Table 3. Peformance of SVMs.
N C γ TPR TNR WRA
88 3 0.1 0.650 0.867 0.517

122 1 0.1 0.556 0.836 0.392

and then we scaled them to the range (−1, 1). The scaled fea-
ture vectors were fed to the SVMs. The performance metrics
were averaged across the 5-fold cross-validation. The SVM-
based method had two free parameters: the cost C and γ. We
searched for the optimal combination of these parameters and
the results obtained with them are shown in Table 3.

When we compare these results with those in Table 2, we
note that in both cases, for τ1 = 7.05 and τ1 = 7.1, the
proposed method outperformed the SVM-based method.

5. CONCLUSION

In this paper, we proposed hierarchical Dirichlet process
Gaussian mixture models for classification of FHR tracings.
These models belong to the family of non-parametric mod-
els, and they have the nice feature of being almost free from
selecting model parameters. The proposed method was im-
plemented on a reduced feature space obtained after PCA
analysis of 14 features. We compared the performance of
the proposed method to that of an SVM-based method on
real tracings. The results show that the proposed method
outperformed the SVM-based method.
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