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ABSTRACT

This paper is concerned with optimal estimation of the state
of a Boolean dynamical systems observed through correlated
noisy Boolean measurements. The optimal Minimum Mean-
Square Error (MMSE) state estimator for general Partially-
Observed Boolean Dynamical Systems (POBDS) can be
computed via the Boolean Kalman Filter (BKF). However,
thus far in the literature only the case of white observation
noise has been considered. In this paper, we develop the
optimal MMSE filter for a class of POBDS with correlated
Boolean measurements. The performance of the proposed
method is subsequently investigated using the p53-MDM2
negative feedback loop genetic network model.

Index Terms— Optimal MMSE State Estimator, Corre-
lated Measurements, Partially-Observed Boolean Dynamical
Systems, Boolean Kalman Filter.

1. INTRODUCTION

The Partially-Observed Boolean Dynamical System (POBDS)
model is a special class of Hidden Markov Model (HMM) that
is comprised of Boolean state variables. Instances of POBDS
occur in fields such as genomics [1], robotics [2], digital
communication systems [3], etc. Several tools for POBDS
have been developed recently, such as the optimal filter and
smoother based on the minimum mean square error (MMSE)
criterion, called the Boolean Kalman Filter (BKF) [4] and
Boolean Kalman Smoother (BKS) [5], respectively. In ad-
dition, adaptive filter, network inference, fault detection and
control algorithms for POBDS were introduced in [6–10].
Furthermore, the software tool “BoolFilter” [11] is available
for estimation and inference of partially-observed Boolean
dynamical systems.

The existing BKF algorithm relies on the fact that the ob-
servation noise is white. However, this assumption might be
violated in various applications in which the measurements
are correlated in time [12, 13]. In this paper, we address the
problem of optimal state estimator for POBDS with correlated
observations by considering an equivalent state space model
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containing only uncorrelated noise. We also discuss an in-
stance of POBDS as a model of gene regulatory networks, and
assess performance of the filter using the p53-MDM2 nega-
tive feedback loop Boolean network.

2. PARTIALLY-OBSERVED BOOLEAN
DYNAMICAL SYSTEMS WITH CORRELATED

BOOLEAN MEASUREMENTS

Deterministic Boolean network models are unable to cope
with uncertainty in state transition due to system noise and
the effect of unmodeled variables. Stochastic models have
been proposed to overcome this difficulty, including Random
Boolean Networks [1], Boolean Networks with perturba-
tion (BNp) [14], and Probabilistic Boolean Networks (PBN)
[15]. All of these models, however, assume that the Boolean
states of the system are directly observed, thus they are not
directly applicable to partially-observed dynamical systems.
The partially-observed Boolean dynamical systems (POBDS)
model was proposed in [4] to deal with the aforementioned
difficulties, and an algorithm for optimal minimum mean-
square error (MMSE) state estimation in this model was
proposed, called the Boolean Kalman Filter.

However, the BKF algorithm given in [4], and further
studied in [6–10,16,17], relies on independence of the obser-
vation noise at distinct time points. In this section, we intro-
duce a special class of POBDS with correlated noisy Boolean
measurements, and in the next section, introduce an equiva-
lent POBDS containing only uncorrelated noise, which can
then be solved optimally by the BKF.

2.1. State Model

We assume that the system is described by a state process
{Xk; k = 0,1, . . .}, where Xk ∈ {0,1}d is a Boolean vector
of size d. The state evolution is thus specified by the following
discrete-time nonlinear signal model:

Xk = f (Xk−1, uk) ⊕ nk , (1)

for k = 1,2, . . ., where uk ∈ {0,1}d is the input at time k, f ∶
{0,1}2d → {0,1}d is a network function, {nk; k = 1,2, . . .}
is a state noise process with nk ∈ {0,1}d, and “⊕” indicates
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component-wise modulo-2 addition. The noise is white in the
sense that it is independent; i.e., nk and nl are independent
for k ≠ l. In addition, the noise process is assumed to be
independent of the state process.

2.2. Observation Model

In most real-world applications, the system state is only par-
tially observable and distortion can be introduced in the obser-
vations by sensor noise. Let {Yk;k = 1,2, . . .} be the obser-
vation process. We assume in this paper that Yk is a binarized
version of the (typically) continuous measured data. Due to
sensor noise, Yk is an imperfect copy of Xk, as given by the
following equation:

Yk = h(Xk,vk) = Xk ⊕ vk , (2)

where vk ∈ {0,1}d is the error noise at time step k. We as-
sume here that the observation process is correlated, so that
vk is correlated to vk−1. In this paper we assume the follow-
ing correlation structure, which is reminiscent of the AR(1)
noise in linear filtering:

vk = Iβk<ρ vk−1 ⊕ rk , (3)

where rk ∈ {0,1}d such that rk is independent of rl for k ≠ l,
Iβk<ρ is an indicator function which returns 1 if βk < ρ and
0 otherwise, with βk ∼ Uniform [0,1], while 0 ≤ ρ ≤ 1 is a
fixed value denoting the amount of dependency between vk
and vk−1. Notice that a ρ value close to 0 or 1 denotes low and
high correlation, respectively. In the next section, the optimal
MMSE estimator for this signal model will be discussed.

3. MMSE FILTER FOR CORRELATED NOISE

To be able to find the optimal MMSE state estimator for the
signal model proposed in (1)-(3) with correlated Boolean
measurements, we define an equivalent state space model by
augmenting state Xk with the noise value vk and writing

[Xk

vk
] = [f(Xk−1,uk)

Iβk<ρ vk−1
]⊕ [nk

rk
] ,

Yk = Xk ⊕ vk

(4)

If we define Zk = (Xk,vk) and wk = (nk, rk), then the
previous model can be put in the form

Zk = f ′(Zk−1,uk)⊕wk ,

Yk = h′(Zk)
(5)

for the appropriate functions f ′ and h′, as can be readily veri-
fied. The new state variable Zk contains 2d variables and 22d

unique states {z1,z2, ...,z2d}. The optimal MMSE estima-
tor for state-space model (5) can be found using the original

BKF algorithm in [4]. We will briefly describe the procedure
below.

Define the state conditional state probability distribution
vectors Πk∣k and Πk∣k−1 by

Πk∣k(i) = P (Zk = zi ∣ Y1∶k) ,

Πk∣k−1(i) = P (Zk = zi ∣ Y1∶k−1) ,
(6)

for i = 1, . . . ,22d, and k = 1,2, . . .. We also define P (Xk =
xi) to be the initial (prior) distribution of the states xi at time
zero. At time k = 0 there are no measurements, so vk = 0.
Therefore, the initial state distribution is given by:

Π0∣0(i) = P (Z0 = zi) =
⎧⎪⎪⎨⎪⎪⎩

P (X0 = xi) , if vk = 0 ,

0 , Otherwise,
(7)

for i = 1, ...,22d. The prediction matrix Mk of size 22d × 22d

which is the transition matrix of the augmented state Markov
chain, can be defined as:

(Mk)ij = P (Zk = zi ∣ Zk−1 = zj) , (8)

for i, j = 1, . . . ,2d. For simplicity, we will assume a noise dis-
tribution where the noise vectors nk and rk have i.i.d. com-
ponents (the general non-i.i.d. case can be similarly han-
dled, at the expense of introducing more parameters), with
P (nk(i) = 1) = p and P (rk(i) = 1) = q, for i = 1, . . . , d.
Parameters 0 < p, q < 1/2 correspond to the amount of “per-
turbation” to the Boolean state and measurement processes,
respectively — the cases p = 1/2 or q = 1/2 corresponding to
maximum uncertainty. In this case, the prediction matrix Mk

in (8) can be rewritten as:

(Mk)ij
= P (nk = f(xj ,uk) ⊕ xi) P (rk = Iβk<ρ vj ⊕ vi)

= p∥x
i ⊕ f(xj ,uk)∥1 (1 − p)d−∥x

i ⊕ f(xj ,uk)∥1

× [ρ q∥v
i ⊕vj∥1 (1 − q)d−∥v

i⊕vj∥1

+ (1 − ρ) q∥v
i∥1 (1 − q)d−∥v

i∥1] ,
(9)

for i, j = 1, . . . ,22d, where ∣∣v∣∣1 = ∑di=1 v(i) for a vector v of
size d.

Additionally, given a value of the observation vector Yk =
yk at time k, the update matrix Tk(yk) of size 22d × 22d is a
diagonal matrix, with diagonal elements:

(Tk(yk))ii = P (Yk = yk ∣ Zk = zi)

=
⎧⎪⎪⎨⎪⎪⎩

1 , if xi ⊕ vi = yk ,

0 , otherwise,

(10)

for i = 1, ...,22d.
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The optimal MMSE filtering problem given observations
Y1∶k = (Y1, . . . ,Yk) consists of finding an estimator Ẑk =
h(Y1∶k) of the state Zk that minimizes the conditional mean-
square error (MSE):

MSE(Y1∶k) = E [∣∣Ẑk −Zk ∣∣2 ∣ Y1∶k] (11)

at each value of Y1∶k (such that it also minimizes the frequen-
tist expected MSE over all possible realizations of Y1∶k) up
to the current time k, for k = 1,2, . . ..

For a vector v of size d, define v ∈ {0,1}d via v(i) =
Iv(i)>1/2 for i = 1, . . . , d, vc ∈ {0,1}d via vc(i) = 1 − v(i),
for i = 1, . . . , d; where Iv(i)>1/2 returns 1 if v(i) > 1/2 and 0

otherwise. The optimal MMSE estimator at time step k, Ẑk
is given by [4, 6]

Ẑk = E [Zk ∣ Y1∶k] , (12)

with optimal filtering MMSE

MSE∗(Y1∶k)
= ∣∣min{E [Zk ∣ Y1∶k] ,E [Zk ∣ Y1∶k]

c} ∣∣
1
,

(13)

where the minimum is computed by component.
Define the matrix A of size 2d × 22d via A = [z1⋯z2

2d],
which contains all possible Boolean states of the system. Both
(12) and (13) require the computation of E[Zk ∣ Y1∶k]. This
can be obtained as

E[Zk ∣ Y1∶k] = AΠk∣k , (14)

where Πk∣k is defined in (6). It is clear that Πk∣k can be
obtained based on the following Bayesian recursion:

Πk∣k(i) = P (Zk = zi ∣ Y1∶k)

= p(Yk ∣ Zk = zi)P (Zk = zi ∣ Y1∶k−1)
P (Yk ∣ Y1∶k−1)

=
(Tk(Yk))iiΠk∣k−1(i)
∣∣Tk(Yk)Πk∣k−1∣∣1

,

(15)

so that Πk∣k = Tk(Yk)Πk∣k−1/∣∣Tk(Yk)Πk∣k−1∣∣1, where
Πk∣k−1 and Tk(Yk) are defined in (6) and (10), respectively.
On the other hand,

Πk∣k−1(i) = P (Zk = zi ∣ Y1∶k−1)

=
2d

∑
j=1

P (Zk = zi ∣ Zk−1 = zj)P (Zk−1 = zj ∣ Y1∶k−1)

=
2d

∑
j=1

(Mk)ijΠk−1∣k−1(j)

(16)

so that Πk∣k−1 = Mk Πk−1∣k−1, where Mk is defined in (8).
Equations (14)-(16) lead to a fully recursive procedure for

computation of the optimal MMSE estimate of the Boolean

states along with the optimal MMSE estimate of measurement
noise at each time point. The complete procedure is summa-
rized in Algorithm 1. The computation is “on-line”, in the
sense that at each new time point, the computation does not
need to be restarted from the beginning, but can be efficiently
updated.

Algorithm 1 Boolean Kalman Filter with Correlated Boolean
Measurements

1: Initialization:

• Create 22d Boolean states,

{z1
= (x1,v1

), . . . ,z22d
= (xd,vd

)}

.
• Let:

Π0∣0(i) = P (Z0 = zi
) =

⎧
⎪⎪
⎨
⎪⎪
⎩

P (X0 = xi
) , if vi

= 0 ,

0 , otherwise.

For k = 1,2, . . ., do:

2: Prediction: Πk∣k−1 = Mk Πk−1∣k−1

3: Update: βk = Tk(Yk)Πk∣k−1

4: Filtered Distribution Vector:

Πk∣k = βk/∣∣βk ∣∣1

5: MMSE Estimator Computation:

Ẑk = AΠk∣k

with optimal conditional MSE

MSE(Y1, . . . ,Yk) = ∣∣min{AΠk∣k, (AΠk∣k)
c
}∣∣1.

4. NUMERICAL EXPERIMENT

In this section, we conduct a numerical experiment using a
Boolean network based on the well-known pathway for the
p53-MDM2 negative feedback loop [20]. The genetic regu-
latory network consists of four genes: ATM, p53, Wip1, and
MDM2, as well as an input, “dna dsb,” which indicates the
presence of DNA double strand breaks. The pathway diagram
for this network is presented in Fig 1.

The network function f in (1) is obtained from this path
diagram as follows. Let f = (f1, . . . , fd), where each compo-
nent fi ∶ 2 × {0,1}d → {0,1}. We let

fi(x,u) =
⎧⎪⎪⎨⎪⎪⎩

1, ∑dj=1 aijx(j) + u(i) > 0 ,

0, ∑dj=1 aijx(j) + u(i) ≤ 0 ,
(17)

where aij = +1 if there is positive regulation (activation) from
gene j to gene i; aij = −1 if there is negative regulation (in-
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Fig. 1: Activation/repression pathway diagram for the p53-
MDM2 negative feedback loop Boolean network.

hibition) from gene j to gene i; and aij = 0 if gene j is not an
input to gene i.

The average rates of correct state estimation over 500 it-
erations obtained by applying the original BKF algorithm as-
suming uncorrelated noise and by the BKF with correlated
noise on a time series of length 100 are presented in Table 1.
It can be seen that as ρ increases, the BKF begins to perform
poorly while the correlated BKF performs well (or better, at a
minimum) in all conditions.

In addition, we observe a higher performance of the pro-
posed correlated BKF in the presence of small measurement
and process noises and no stress condition (dna dsb = 0). The
reason for this phenomenon is that the system with active
DNA damage has cyclic attractors, as opposed to a singleton
attractor for a “no stress’ condition, making the estimation
process more difficult for the case where dna dsb = 1.

Table 1: Average performance of the BKF assuming uncor-
related noise and the BKF for correlated noise.

dna dsb = 0 dna dsb = 1

p q ρ BKF Correlated BKF Correlated
BKF BKF

0.01

0.01
0.1 0.94 0.96 0.93 0.94
0.5 0.87 0.96 0.86 0.94
1.0 0.22 0.96 0.21 0.93

0.1
0.1 0.91 0.92 0.82 0.84
0.5 0.87 0.92 0.77 0.82
1.0 0.57 0.91 0.54 0.83

0.1

0.01
0.1 0.89 0.90 0.85 0.86
0.5 0.83 0.89 0.80 0.86
1.0 0.26 0.89 0.21 0.86

0.1
0.1 0.62 0.64 0.53 0.56
0.5 0.53 0.64 0.49 0.56
1.0 0.15 0.63 0.10 0.54

Figure 2 shows the original and estimated state trajecto-

ries for a single time series of length 100, ρ = 1, dna dsb = 0,
p = 0.01, and q = 0.05. It is clear that better estimation is
achieved for all genes using the correlated BKF in compari-
son to the BKF.

Original Trajectory Correlated BKF BKF

Time

M
d

m
2

W
ip

1
p

5
3

A
TM

Fig. 2: Original and estimated gene activities.
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