
POSTICA�PHASE�DENOISING�FOR�RESTINGSTATE�COMPLEXVALUED�
FMRI�DATA�

�
LiDan�Kuang�1,�QiuHua�Lin�1,�XiaoFeng�Gong�1,�Fengyu�Cong�2,3,�and�Vince�D.�Calhoun4,5�

 
1 School of Information and Communication Engineering, Dalian University of Technology,  

Dalian 116024, China 
qhlin@dlut.edu.cn 

2 Department of Biomedical Engineering, Dalian University of Technology, China 
3 Department of Mathematical Information Technology, University of Jyvaskyla, Finland 

4 The Mind Research Network, Albuquerque, NM 87106, USA 
5 Department of Electrical and Computer Engineering, University of New Mexico,  

Albuquerque, NM 87131, USA 
 

ABSTRACT�
�
Magnitude-only resting-state fMRI data have been largely 
investigated via independent component analysis (ICA) for 
exacting spatial maps (SMs) and time courses. However, the 
native complex-valued fMRI data have rarely been studied. 
Motivated by the significant improvements achieved by ICA 
of complex-valued task fMRI data than magnitude-only task 
fMRI data, we present an efficient method for de-noising 
SM estimates which makes full use of complex-valued 
resting-state fMRI data. Our two main contributions include: 
(1) The first application of a post-ICA phase de-noising 
method, originally proposed for task fMRI data, to resting-
state data, which recognizes voxels within a specific phase 
range as desired voxels. (2) A new phase range detection 
strategy for a specific SM component based on correlation 
with its reference. We continuously change the phase range 
within a larger range, and compute a set of correlation 
coefficients between each de-noised SM and its reference. 
The phase range with the maximal correlation determines 
the final selection. The detected results by the proposed 
approach confirm the correctness of the post-ICA phase de-
noising method in the analysis of resting-state complex-
valued fMRI data. 
 

Index Terms Independent component analysis (ICA), 
complex-valued fMRI data, resting-state fMRI data, phase 
de-noising, phase range detection
�

1.�INTRODUCTION�
 
Resting-state functional magnetic resonance imaging (fMRI) 
data have attracted widespread interest in recent years since 
they are easily collected especially for cognitively-impaired 
patients in contrast to task fMRI data [1], and reflect 

spontaneous neuronal activity [2, 3]. With the aid of model-
based methods or data-driven methods, resting-state fMRI 
data have found successful applications to brain function and 
diseases study. This study focuses on a widely used data-
driven method called independent component analysis (ICA), 
which is capable of extracting spatial maps (SMs) and time 
courses (TCs) from fMRI data without any knowledge about 
the data [4-8]. ICA-separated SMs provide spatially 
localized connectivity networks containing correlated 
activity [9], and the TCs are frequently exploited for 
functional network connectivity (FNC), a measure of 
between network connectivity [5-8, 10, 11]. FNC has been 
shown to be significantly different for healthy controls and 
patients, e.g., schizophrenia [5, 6], Alzheimer [7], major 
depressive disorder [8], and bipolar disorder [6] among 
others. 

Resting-state fMRI data are initially acquired as 
complex-valued image pairs including magnitude and phase 
information [12-16]. However, to our best knowledge, 
existing ICA analysis have studied only magnitude resting 
fMRI data. This study aims to explore ICA of full resting-
state complex-valued data, in an effort to extract improved 
components compared to magnitude-only fMRI data. Our 
motivation comes from the results obtained from ICA of 
complex-valued task fMRI data with a proper de-noising 
strategy. Note phase de-noising is essential for the analysis 
of complex-valued fMRI data, as phase fMRI data are much 
noisier than magnitude fMRI data [15, 16]. A complex-
valued ICA method with pre-ICA phase de-noising (utilizing 
observed phase images to identify and remove noisy voxels 
in fMRI data) achieved higher sensitivity and specificity 
than magnitude-only ICA methods [14, 17, 18]; and the 
complex-valued method using post-ICA phase de-noising 
(exploiting the SM phase information to identify and remove 
noisy voxels in ICA estimates) detected more of the desired 
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BOLD-related voxels than pre-ICA de-noising and extracted 
more contiguous and reasonable activations than a 
magnitude-only method for task-related (139%) and default 
mode (331%) SMs [16]. This shows the potential to improve 
ICA of resting-state fMRI data by utilizing complex-valued 
data and a proper phase de-noising method. 

In this study, we utilize full resting-state complex-
valued fMRI data using a post-ICA phase de-noising method 
[16]. Since this post-ICA phase de-noising method was 
originally proposed for task fMRI data, and recognized the 
voxels with phase values within a specific range  (e.g., 

/= 4 ) as the desired BOLD-related voxels, this study 
mainly examines two aspects: (1) If the existing post-ICA 
phase de-noising method can be directly applied to the 
resting-state fMRI data; (2) If the specific range /= 4  is 
efficient for resting-state fMRI data. In order to answer these 
questions, we propose a new phase range detection strategy 
based on correlation with prior SM references. The detected 
results by this new strategy confirm the correctness of the 
post-ICA phase de-noising method in the analysis of resting-
state complex-valued fMRI data. 
 

2.�POSTICA�PHASE�DENOISING 
�
Assume there are N components for ICA to estimate; is  
( 1, ,i N,N, ) is an SM component estimated by ICA and 
adjusted to remove phase ambiguity by maximizing the real-
part power of its corresponding TC [16]. Let ,phaseis  denote 
its phase image, ,phase ( )i ls  the phase value of voxel l , l  the 
voxel index ( 1, ,l L,L, ), and L the total number of the brain 
voxels obtained by flattening the volume image data. The 
range of ,phase ( )i ls  is [ , ]  (without wrapping). 

The post-ICA phase de-noising method classifies the 
whole voxels of is  into two categories according to their 
phase values, the BOLD-related voxels and the unwanted 
voxels (caused probably by large vessels, physiologic noise 
and motion) [16]: 

 ,phaseBOLD-related, ( )
voxel( )

unwanted,
iif l

l
otherwise

s
  (1) 

where voxel( )l  denotes the voxel of index l  in is ;  
denotes the phase range of the desired BOLD-related voxels, 
and 4  for task fMRI data. 

For de-noising ICA-estimated SMs in a single-subject 
analysis, a binary phase mask for subject p is constructed as 
[16]: 

 ,phase1, ( )BM1 ( )
0,

p
ip if l

otherwise

s
  (2) 

By masking a single-subject SM estimate with BM1 ( )p , 
the goal of SM de-noising is achieved. 

3.�NEW�PHASE�RANGE�DETECTION�METHOD 
 
Considering the phase range  is an empirical choice, 
e.g., /= 4  is suitable for task fMRI data, we propose a 
precise phase range detecting approach for a specific SM 
component based on correlation with its SM reference. As 
the phase range of the desired BOLD-related voxels may be 
larger than /4 , we continuously change the phase range 
within a larger range (0, 2] , and then calculate a set 
of correlation coefficients between each de-noised SM and 
its reference. The phase range corresponding to the maximal 
correlation coefficient is the final selection for de-noising 
this SM component: 
 ,

(0, 2]
arg max corr BM1 ( ) ,p

i i refs s   (3) 

where ,i refs  denotes a magnitude-only prior SM reference 

for is , which can be generated from spatial networks 
consistently found in previous studies [20] or from the 
available atlases including Brodmann areas and functional 
areas using WFUPickAtlas [23]; BM1 ( )p

is  de-
noised is  with phase range ,  the dot product,  
magnitude calculation,  correlation computation. 

A practical implementation for the proposed approach is 
as follows: let / 2 , 1,k K k KK . Then we generate 
K phase ranges for detecting, i.e., 2 , ,K ,  2 . The 
larger K is, the more precise the detected phase range is. In 
this study, we set K=32.  

With a newly detected phase range, a component-
specific mask can be constructed using Eq. (2). 
�

4.�EXPERIMENTS�AND�RESULTS�
�
4.1.�RestingState�fMRI�Data 
 
The resting-state complex-valued fMRI data were collected 
from 24 healthy controls recruited by University of New 
Mexico, with written subject consents. FMRI scans were 
acquired using a 3.0 Tesla Siemens Allegra scanner, 
equipped with 40 mT/m gradients and a standard quadrature 
head coil. The functional scan was acquired using gradient-
echo echo-planar imaging with the following parameters: TR 
= 1.86 s, TE = 27 ms, field of view = 24 cm, acquisition 
matrix = 64 × 64, flip angle = 70°, slice thickness =3 mm, 
slice gap = 1 mm. During the scan, all participants were 
instructed to rest quietly in the scanner, keep their eyes open 
without sleeping and not to think of anything in particular. 
Data preprocessing was performed using the SPM software 
package (http://www.fil.ion.ucl.ac.uk/spm). In order to avoid 
T1 magnetization effects, the first several dummy scans were 
excluded and 146 resting state scans were used for analysis. 
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After motion correction, the functional images were 
normalized into Montreal Neurological Institute standard 
space. Following spatial normalization, the data were 
slightly sub-sampled to 3 × 3 × 3 mm³, resulting in 53 × 63 
× 46 voxels. Both the real and imaginary images were 
spatially smoothed with a 10 mm3 full width half-maximum 
(FWHM) Gaussian kernel. 
 
4.2.�Three�Components�of�Interest 
 
There are a large number of components in resting-state 
fMRI data. We changed N from 40 to 80, and found that the 
separation performance for N=60 was better. Therefore, we 
used entropy bound minimization (EBM) algorithm [19], an 
efficient complex-valued ICA algorithm, to first separate 60 
components, and then selected three components of interest 
as examples for evaluation. The three selected components 
are a medial visual component, the default mode network 
(DMN) component, and a sensorimotor component. Their 
magnitude-only SM references are available in [20]. 

For comparison, we also performed magnitude-only 
analysis using the widely-used Infomax algorithm [21] with 
N�= 60. Since we used |Z| > 0.5 as the threshold of z-scored 
SM estimates for our method, we provided two groups of 
Infomax results for magnitude-only analysis: (1) |Z| > 0.5; (2) 
|Z| > 2.5, as 2.5 is a typical threshold for reliably removing 
noisy voxels in SMs for magnitude-only method. We 
calculated Pearson correlation coefficient  between 
magnitudes of SM estimates with their corresponding 
references to evaluate the performance. 
 
4.3.�Results�of�Phase�Range�Detection�
�
For a single-subject of fMRI data, we first obtained the SM 
estimates for three components of interest, i.e., the medial 
visual component, the DMN component, and the 
sensorimotor component, by using the prior SM references, 
and then detected the phase ranges  of the desired 
BOLD-related voxels for each component, according to Eq. 
(3). Fig. 1 includes the results for 24 subjects. We can 
observe that majority of the detected phase ranges are 
smaller than 4 , which was derived for task fMRI data 
based on a criterion of TC real-part power maximization 
[16]. We examine detailed information for 5 subjects 
(subjects 1, 3, 4, 16, 20, who showed a larger phase range 
than 4 ) in terms of the number of voxels inside and 
outside of the phase range /4  in Table 1. We find that 
there were only very few voxels whose phase values were 
larger than /4  (maximum 3.49%, minimum 0.04%), 
though the detected phase range was larger than /4 . This 
suggests that /4  is also suitable for de-noising resting-
state complex-valued fMRI data. 

4.4.�Results�from�SingleSubject�Analyses�
 
We showed the results of three components of interest from 
one exampling subject (subject 2) in Fig. 2. We compared 
the de-noised SMs using phase range 4  and the 
detected phase range , in addition to the SM estimates 
before phase de-noising, the SM references for the medial 
visual component, the DMN component, and the 
sensorimotor component. The correlation coefficients of de-
noised SMs with the SM references are also shown in Fig. 2. 
The phase de-noising effects can be readily observed from 
columns 2 and 3. Prior to phase de-noising (column 2), SM 
estimates contained many unwanted voxels with both larger 
and lower amplitudes than the desired BOLD-related voxels. 
After phase de-noising, the noisy voxels were largely 
eliminated. When comparing the results for two phase 
ranges, see column 3 ( 4 ) and column 4 (our detected 
much smaller phase ranges: 3 64 , 16 , and 8 ), 
they look highly similar, though the proposed method 
obtained higher correlation coefficients. Therefore, the 
phase range 4  is proper for the resting-state fMRI data. 
 

0 5 10 15 20 250

8

8

Visual DMN Sensorimotor

Subjects  
Fig.� 1. The phase ranges detected for three components of 
interest (the medial visual component, the DMN component, 
and the sensorimotor component) by the proposed method 
from 24 subjects of resting-state complex-valued fMRI data. 
 
Table� 1. The number of voxels inside and outside of the 
phase range /4 , their difference, and the ratio of the 
difference to the total voxels detected by the proposed 
method ( ) for 5 subjects (subject 1, 3, 4, 16, 20). 
Subject  is shorted as S .�

 Visual DMN 
 S1 S3 S4 S16 S20 

 9356 8691 10606 10758 11018 
/4 9261 8678 10583 10383 11014 

difference 95 13 23 375 4 
ratio 1.02% 0.15% 0.22% 3.49% 0.04% 

 
4.5.�Comparison�with�Magnitudeonly�Method 
 
Fig. 3 includes magnitude-only results estimated by real-
valued Infomax (N� = 60) using two difference thresholds: 
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|Z| > 0.5 and |Z| > 2.5, with comparison to the de-noised 
SMs using our detected phase range (the same as those 
shown in the last column of Fig. 2). The Infomax results 
with |Z| > 0.5 included more unwanted voxels than those 
with |Z| > 2.5, thus had relatively lower correlation 
coefficients with the references. The de-noised SMs 
obtained by the proposed method not only yielded higher 
correlation coefficients, but also detected more contiguous 
and reasonable activations. Table 2 displays quantitative 
comparison of complex-valued method and magnitude-only 
method (|Z| > 2.5) in terms of number of total voxels, voxels 
inside and outside of the references for three SM estimates. 
We can find that complex-valued method detected 6 times as 
many as magnitude-only method for total voxels, and 3~4 
times for voxels inside the references. As for the large 
number of voxels outside the references, which were 
detected by complex-valued method, most of them were 
expected to be activated. For example, complex-valued 
analysis extracted additional voxels in the occipital pole 
visual areas for the medial visual component [20], the 
medial prefrontal cortex and posterior cingulate cortex for 
the DMN component [22], and primary motor area for the 
sensorimotor component. 
 

B.�DMN

A.�Visual

C.�Sensorimotor

References Before�denoising

3 /64

/16

/8

0.520

After�denoising
/4)

After�denoising
(proposed ) 

 
Fig.�2. De-noised SMs (|Z| > 0.5) using phase range 4  
and our detected phase range  for subject 2. (A) The 
media visual component. (B) The DMN component. (C) The 
sensorimotor component. SM estimates before phase de-
noising, SM references and correlation coefficients of de-
noised SMs with the SM references are also shown. 
 

5.�CONCLUSION�
�

Post-ICA phase de-noising was originally proposed for task 
complex-valued fMRI data with a derived phase range 

4 . In this study, we applied post-ICA phase de-noising 
to resting-state complex-valued fMRI data. In the meantime, 
we proposed a new phase range detection strategy for a 

specific SM component based on correlation with its prior 
SM reference. Experimental results from 24 subjects show 
that the proposed method can find more precise phase range, 
thus can be used separately. The phase range 4  is 
correct and general for both resting-state and task fMRI data. 
Compared with magnitude-only ICA, complex-valued 
method can detect more contiguous and reasonable 
activations. 
 

B.�DMN

A.�Visual�

C.�Sensorimotor

(1)�Magnitudeonly

0.5

20

0.5

20

0.5

20

-12.3

12.3

|Z|�>�0.5 |Z|�>�2.5

-10.1

10.1

-7.2

7.2

-12.3

12.3

-10.1

10.1

-7.2

7.2

(2)�Complexvalued
|Z|�>�0.5

 
Fig.� 3. Comparison of complex-valued analysis using our 
method (|Z| > 0.5) and magnitude-only analysis using 
Infomax (|Z| > 0.5 and |Z| > 2.5) for subject 2. (A) The 
media visual component. (B) The DMN component. (C) The 
sensorimotor component. Correlation coefficients with the 
SM references are shown. 
 
Table�2. Number of total voxels, voxels inside and outside 
of the references for three SMs detected by complex-valued 
method and magnitude-only method (|Z| > 2.5) for subject 2.�

  Total  Inside 
reference 

Outside 
reference 

Visual Complex 8744 4011 4733 
Magnitude 1461 1219 242 

DMN Complex 10936 5526 5410 
Magnitude 1770 1475 295 

Sensori
-motor 

Complex 9736 2925 6811 
Magnitude 1532 718 814 
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