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ABSTRACT

This paper presents methods to analyze functional brain networks and
signals from graph spectral perspectives. The notion of frequency and
filters recently generalized to irregular graph domains defines brain
graph frequencies associated with different levels of spatial smoothness
across the brain regions. Brain network frequency also enables the
decomposition of brain signals into pieces corresponding to smooth or
rapid variations. The methods are utilized to analyze brain networks and
signals as subjects master a simple motor skill. We observe that brain
signals corresponding to different graph frequencies exhibit different
levels of contribution to active learning. Specifically, we notice a strong
association between graph spectral properties of brain networks and the
level of exposure to tasks performed, and recognize the most contribut-
ing and important frequency signatures at different task familiarity.

Index Terms— Functional brain network, network theory, graph
signal processing, fMRI, motor learning, filtering.

1. INTRODUCTION

The study of brain activity patterns has proven valuable in identifying
neurological disease and individual behavioral traits [2, 3]. The use of
functional brain networks describing the tendency of different regions
to act in unison has proven complementary in the analysis of similar
matters [4–7]. It is not surprising that signals and networks prove useful
in similar problems since the two are closely related. In this paper we
advocate an intermediate path in which we interpret brain activity as a
signal supported on the graph of brain connectivity. We show how the
use of graph signal processing tools can be used to glean information
from brain signals using the network as an aid to identify patterns of
interest. The benefits of incorporating network information into signal
analysis has been demonstrated in multiple domains [8–12].

The fundamental GSP concepts that we utilize to exploit brain con-
nectivity in the analysis of brain signals are the graph Fourier transform
(GFT) and the corresponding notions of graph frequency components
and graph filters. These concepts are generalizations of the Fourier trans-
form, frequency components, and filters that are used in regular domains
such as time and spatial grids [13, 14]. As such, they permit the de-
composition of a graph signal into components that represent different
modes of variability. We can define low graph frequency components
representing signals that change slowly with respect to brain connectiv-
ity networks in a well defined sense and high graph frequency compo-
nents representing signals that change fast in the same sense. This is
important because low and high temporal variability have proven impor-
tant in the analysis of neurological disease and behavior [15, 16]. GFT
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based decompositions permit a similar analysis of variability across re-
gions of the brain for a fixed time – a sort of spatial variability measured
with respect to the connectivity pattern.

The goal of this paper is to introduce GSP notions that can be used
to analyze brain signals and to demonstrate their value in identifying
patterns that appear when monitoring activity as subjects learn to per-
form a visual-motor task. We begin the paper with the introduction of
basic notions of graphs and graph signals (Section 2). We then move
on to describe two different experiments involving the learning of differ-
ent visual-motor tasks by different sets of participants (Section 3). We
visualize the decomposed graph signals (Section 4) and find that high
graph frequencies of functional networks concentrate on visual and sen-
sorimotor modules of the brain – the two brain areas well-known to be
associated with motor learning [17, 18]. Finally, we examine the impor-
tance of brain frequencies at different task familiarity by evaluating their
respective correlation with learning performance at different task famil-
iarities (Section 5). We find as learning progresses, we favor different
levels of graph frequency components.

2. GRAPH SIGNAL PROCESSING

The interest of this paper is to study brain signals in which we are given
a collection of measurements xi associated with each cortical region out
of n different brain regions. An example signal of this type is an fMRI
reading in which xi estimates the level of activity of brain region i. The
collection of n measurements is henceforth grouped in the vector signal
x. A fundamental feature of the signal x is the existence of an underlying
pattern of structural or functional connectivity that couples the values of
the signal x at different brain regions.

We do so by modeling connectivity between brain regions with a
network that is connected, weighted, and symmetric. Formally, we de-
fine a network as the pair G = (V,W), where V = {1, . . . , n} is
a set of n vertices or nodes representing individual brain regions and
W ∈ Rn×n represents weights of edges in the network with wij ≥ 0
being the weight of the edge (i, j), in which i, j ∈ V . Since the network
is undirected and symmetric we have that wij = wji for all (i, j). The
weights wij = wji represent the strength of the connection between
regions i and j, or, equivalently, the proximity or similarity between
nodes i and j. We adopt the conventional definitions of the degree and
Laplacian matrices [19, Chapter 1]. The degree matrix D ∈ Rn×n+ is
a diagonal matrix with its ith diagonal element Dii =

∑n
j=1 wij . The

Laplacian matrix is defined as the difference L := D −W ∈ Rn×n.
We note that brain networks, irrespective of whether their connectivity
is functional [20] or structural [21], tend to be stable for a window of
time, entailing associations between brain regions during captured time
of interest. Brain activities can vary more frequently, forming multiple
samples of brain signals supported on a common underlying network.

The graph Laplacian L can be decomposed into its eigenvalue com-
ponents, L = VΛVH such that for the set of eigenvalues {λk}k=0,1,...,n−1,
the diagonal eigenvalue matrix is defined as Λ := diag(λ0, . . . , λn−1),
and V := [v0, . . . ,vn−1] is the eigenvector matrix. VH represents
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the Hermitian (conjugate transpose) of the matrix V. We assume the
eigenvalues of the Laplacian L are ordered so that 0 = λ0 ≤ λ1 ≤
. . . ≤ λn−1. The eigenvector matrix V is used to define the Graph
Fourier Transform of the graph signal x as we next [14].

Definition 1 Given a signal x ∈ Rn and a graph Laplacian L ∈ Rn×n,
the Graph Fourier Transform (GFT) of x with respect to L is the signal
x̃ := VHx. The inverse (i)GFT of x̃ with respect to L is defined as
x := Vx̃. We say that x and x̃ form a GFT pair.

An important property of the GFT is that it encodes a notion of vari-
ability akin to the notion of variability that the Fourier transform en-
codes for temporal signals. Given a graph signal x with GFT x̃ we
can isolate the frequency components corresponding to the lowest KL

graph frequencies by defining the filtered spectrum x̃L := H̃Lx̃ satis-
fying x̃Lk = x̃k for k < KL and x̃Lk = 0 otherwise. The filter H̃L

can be written as the diagonal matrix H̃L := diag(h̃L) where the vector
h̃L takes value 1 for frequencies smaller than KL and is otherwise null,
h̃Lk = I

[
k < KL

]
. Utilizing the definitions of the GFT and the iGFT,

the spectral operation x̃L = H̃Lx̃ is equivalent to performing the follow-
ing operations in the graph vertex domain xL = Vx̃L = VH̃Lx̃ =
VH̃LV−1x =: HLx. From this equality, we can see that the signal xL

contains the low graph frequency components of x, and so we say the
matrix HL is a graph low-pass filter.

The filter HL := VH̃LV−1 admits an alternative representation as
the expansion HL =

∑n−1
k=0 hLkL

k in terms of Laplacian powers. Since
the eigenvalues are ordered, the coefficients hLk tend to be concentrated
in small indexes k, and the expansion HL =

∑n−1
k=0 hLkL

k is therefore
dominated by small powers Lk. From this fact it follows that we can
think of the graph low-pass filtered signal xL as resulting from a local-
ized averaging of the elements of x. To understand this interpretation,
simply note that L0x = x coincides with the original signal, Lx is an
average of neighboring elements, L2x is an average of elements in nodes
that interact via intermediate common neighbors, and, in general, Lkx
describes interactions between k-hop neighbors. The fact that xL can be
considered as a signal that follows from local averaging of x implies that
xL has smaller total variation than x.

Other types of graph filters can be defined analogously to study inter-
actions between signal components other than the local interactions cap-
tured in xL. Apart from the graph low-pass filter HL, we also consider a
graph band-pass filter HM and a graph high-pass filter HH, whose graph
frequency responses are defined as h̃Mk = I

[
KL ≤ k < KL + KM

]
and h̃Hk = I

[
KL + KM ≤ k

]
. The definitions for filters are such that

the low-pass filter takes the lowest KL graph frequencies, the band-pass
filter captures the middle KM graph frequencies, and the high-pass filter
the highest n−KL−KM frequencies. The three filters are defined such
that the graph frequencies of their respective interest are mutually exclu-
sive yet collectively exhaustive. As a result, if we use xM := HMx and
xH := HHx to respectively denote the signals filtered by the band-pass
and high-pass filters, we have that the original signal can be written as
the sum x = xL + xM + xH. This gives a decomposition of x into low,
medium, and high frequency components which respectively represent
signals that have slow, medium, and high variability with respect to the
connectivity network between brain regions. This decomposition is uti-
lized in this paper to analyze brain activity patterns associated with the
learning of visual-motor tasks.

3. BRAIN SIGNALS DURING LEARNING

We considered two experiments in which subjects learned a simple mo-
tor task [22, 23]. In the experiments, fourty-seven right-handed partici-
pants (mean age 24.13 years) volunteered with informed consent in ac-
cordance with the University of California, Santa Barbara Internal Re-
view Board. After exclusions for task accuracy, incomplete scans, and
abnormal MRI, 38 participants were retained for subsequent analysis.

Session 1 Session 2 Session 3 Session 4

MIN Sequences 50 110 170 230
MOD Sequences 50 200 350 500
EXT Sequences 50 740 1430 2120

Fig. 1. Relationship between training duration, intensity, and depth for
the first experimental framework.

Fig. 2. Distribution of decomposed signals for the 6 week experiment
(Top) and 3 day experiment (Bottom). Decomposed signal xL averaged
across all subjects is plotted on the left, xM on the middle, and xH on the
right.

Twenty individuals participated in the first experimental framework.
The experiment lasted 6 weeks, in which there were 4 scanning sessions,
roughly at the start of the experiment, at the end of the 2nd week, at the
end of the 4th week, and at the end of the experiment, respectively. Dur-
ing each scanning session, individuals performed a discrete sequence-
production task in which they responded to sequentially presented stim-
uli with their dominant hand on a custom response box. Sequences were
presented using a horizontal array of 5 square stimuli with the responses
mapped from left to right such that the thumb corresponded to the left-
most stimulus. The next square in the sequence was highlighted im-
mediately following each correct key press; the sequence was paused
awaiting the depression of the appropriate key if an incorrect key was
pressed. Each participant completed 6 different 10-element sequences.
Each sequence consists of two squares per key. Participants performed
the same sequences at home between each two adjacent scanning ses-
sions, however, with different levels of exposure for different sequence
types. Therefore, the number of trials completed by the participants after
the end of each scanning session depends on the sequence type. There
are 3 different sequence types (MIN, MOD, EXT) with 2 sequences per
type. The number of trials of each sequence type completed after each
scanning session averaged over the 20 participants is summarized in Fig.
1. Eighteen subjects participated in the second experimental framework.
The experiment had 3 scanning sessions spanning the three days. Each
scanning session lasted roughly 2 hours and no training was performed
at home between adjacent scanning sessions. Subjects responded to a
visually cued sequence by generating responses using the four fingers
of their nondominant hand on a custom response box. Visual cues were
presented as a series of musical notes on a pseudo-musical staff with
four lines such that the top line of the staff mapped to the leftmost key
pressed with the pinkie finger. Each 12-note sequence randomly ordered
contained three notes per line. Each training epoch involved 40 trials and
lasted a total of 245 repetition times (TRs), with a TR of 2,000 ms. Each
training session contained 6 scan epochs (240 trials) and lasted a total
of 2,070 scan TRs. In both experiments participants were instructed to
respond promptly and accurately. Repetitions (e.g., “11”) and regulari-
ties such as trills (e.g., “121”) and runs (e.g., “123”) were excluded in all
sequences. The order and number of sequence trials were identical for
all participants. Participants completed the tasks inside the MRI scanner
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for scanning sessions.
Reordering with fMRI was conducted using a 3.0 T Siemens Trio

with a 12-channel phased-array head coil. For each functional run, a
single-shot echo planar imaging sequence that is sensitive to blood oxy-
gen level dependent (BOLD) contrast was utilized to obtain 37 (the first
experiment) or 33 (the second experiment) slices (3mm thickness) per
repetition time (TR), an echo time of 30 ms, a flip angle of 90◦, a field
of view of 192 mm, and a 64 × 64 acquisition matrix. Image prepro-
cessing was performed using the Oxford Center for Functional Magnetic
Resonance Imaging of the Brain (FMRIB) Software Library (FSL), and
motion correction was performed using FMRIB’s linear image registra-
tion tool. The whole brain is parcellated into a set of n = 112 regions
of interest that correspond to the 112 cortical and subcortical structures
anatomically identified in FSL’s Harvard-Oxford atlas. The threshold in
probability cutoff settings of Harvard Oxford atlas parcellation is 0 so
that no voxels were excluded.

For each individual fMRI dataset, we estimate regional mean BOLD
time series by averaging voxel time series in each of the n regions. We
evaluate the magnitude squared spectral coherence [24] between the ac-
tivity of all possible pairs of regions to construct n×n functional connec-
tivity matrices W. Besides, for each pair of brain regions i and j, we use
t-statistical testing to evaluate the probability pi,j of observing the mea-
surements by random chance, when the actual data are uncorrelated [25].
In the 3 day dataset, the value of all elements with no statistical signif-
icance (pi,j > 0.05) [26] are set to zero; the values remain unchanged
otherwise. In the 3 day experiment, a single brain network is constructed
for each participant. Thresholding is applied because the networks are
for the entire span of the experiment and many entries in W would be
close to zero without threshold correction. In the 6 week experiment, due
to the long duration of the experiment, we build a different brain network
per scanning session, per sequence type for each subject. Because each
network describes the functional connectivity for one training session
given a subject, not many entries will be removed even in the presence
of threshold correction; consequently, no thresholding is applied for the
6 week dataset. We normalize the regional mean BOLD observations
x̂(t) at any sample time t and consider x(t) = x̂(t)/‖x̂(t)‖2 such that
the total energy of activities at all structures is consistent at different t to
avoid extreme spikes due to head motion or drift artifacts in fMRI.

4. FREQUENCY DECOMPOSITION OF BRAIN SIGNALS

We investigate brain signals from a GSP perspective, and analyze the
brain signals by examining the decomposed graph signals xL,xM, and
xH with respect to the underlying brain networks. We compute the abso-
lute magnitude of the decomposed signal xL for each brain region aver-
aged across all sample signals for each individual during a scan session
and then averaged across all participants. Similar aggregation is applied
for xM and xH. Fig. 2 presents the distribution of the decomposed sig-
nals corresponding to different levels of spatial variations for in both the
two experiments considered (Top: first scan session in the 6 week ex-
periment and Bottom: 3 day experiment). Other scan sessions in 6 week
experiment yield similar results. Brain regions with absolute magnitudes
lower than a fixed threshold are not colored.

A deep analysis of Fig. 2 yields many interesting aspects of graph
frequency decomposition. First, for xL, the magnitudes on adjacent brain
regions tend to possess highly similar values, resulting in a more evenly
spread brain signal distribution, where as for xH, neighboring signals
can exhibit highly dissimilar values; this corroborates the motivation to
use graph frequency decomposition to segment brain signals into pieces
corresponding to different levels of spatial fluctuations. Second, decom-
posed signals for a specific level of variation, notedly xH, are highly
similar with respect to different scan sessions in an experiment as well
as with respect to the two experiments with different sets of participants.
The correlation coefficient between datasets for high graph frequencies

‖xL‖2 ‖xM‖2 ‖xH‖2
6 week experiment (linear scale) −0.3155 0.0897 0.4125

6 week experiment (logarithm scale) −0.5409 0.3992 0.3565
3 day experiment −0.9873 0.8443 0.9605

Fig. 3. Pearson correlation coefficients between the number of trials
(level of task familiarity) and R values, defined as correlations between
learning rate parameters and the norm of the decomposed signal of in-
terest. Decreasing association with exposure to tasks is observed for the
‖xL‖2 and increasing importance is noticed for ‖xH‖2.

is 0.6469. Third, recall that we normalize the brain signals at every
sample point for all subjects, and for this reason signals xL,xM and xH

would be similarly distributed across the brain if nothing interesting hap-
pens at the decomposition. However, in both Fig. 2, it is observed that
many brain regions possess magnitudes higher than a threshold in xL

(∼ 60% pass) and xH (∼ 20% pass) while not many brain regions pass
the thresholding with respect to xM (∼ 3% pass). It has long been un-
derstood that the brain combines some degree of disorganized behavior
with some degree of regularity and that the complexity of a system is
high when order and disorder coexist [27]. xL varies smoothly across
the brain network and therefore can be regarded as regularity (order),
whereas xH fluctuates rapidly and consequently can be considered as
randomness (disorder). This evokes the intuition that graph frequency
decomposition segments a brain signal x into pieces xL and xH, which
reflect order and disorder (and are therefore more interesting), as well as
the remaining xM.

5. FREQUENCY SIGNATURES OF TASK FAMILIARITIES

Given a participant, for each sequence completed, we defined the move-
ment time M as the difference between the time of the first button press
and the time of the last button press during a single sequence. We then
estimate the participant’s learning rate by fitting an exponential function
(plus a constant) using the robust outlier correction [28] to the sequence
of movement times M,

M = c1e
t/κ + c2. (1)

where t is a sequence representing the time index, κ is the exponential
drop-off parameter (which we call the “learning rate parameter”) used
to describe the early and fast rate of improvement, and c1 and c2 are
nonnegative constants. A negative value of κ indicates a decrease in
movement time M(t), which is thought to indicate that learning is oc-
curring [29]. We chose exponential because it is viewed as the most
statistically robust choice [30]. Further, the approach that we used has
the advantage of estimating the rate of learning independent of initial
performance or performance ceiling.

We evaluate the learning rate for all participants at each scanning
session, and then compute the correlation between the norm ‖xL‖2 of
the decomposed signal corresponding to low spatial variation and the
learning rates across subjects. The correlation (R value) between the
norms ‖xM‖2 as well as ‖xH‖2 and learning rates are also calculated.
Fig. 4 plots the Pearson correlation coefficients at all scanning sessions
of the two experiments considered. The horizontal axis denotes the level
of exposure of participants to the sequence – which day in the 3 day
experiment and how many number of trials participants have completed
at the end of the scanning session in the 6 week experiment. Points are
densely distributed for small number of trials in the 6 week experiment,
so to mitigate this effect, we also plot the points by taking the logarithm
of numbers of trials completed. We emphasize that due to normalization
at each sampling point, the correlation values would all be 0 if graph
frequency decomposition segments brain signals into three equivalent
pieces. There are scan sessions where the correlation is of particular
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Fig. 4. Scatter plots in which each point is for a specific training session (level of task familiarity), depicting the R value defined here as correlations
between learning rate parameters and the norm of the decomposed signal of interest (Left: xL, Middle: xM, and Right: xH). Top: 6 week experiment
with number of trials in linear scale. Middle: 6 week experiment logarithm scale. Bottom row: 3 day experiment.

interest, however the most noteworthy observation is the change of cor-
relation values with the level of exposure for participants.

In general, for xL corresponding to smooth spatial variation, we see
a gradually decreasing trend in correlation with learning as training pro-
gresses. Although not all training sessions can be fit to this pattern (i.e.
trials 500 and 740), it is still visible that the correlation with learning is
above zero (≈ 0.25) at the start of the training when participants perform
the task for the first time and gradually shifts to below zero (≈ −0.25) at
the end of the experiment when individuals are highly familiar with the
sequence. For xH corresponding to vibrant spatial variation, its correla-
tion with learning is below zero (≈ −0.2) at the start of the training, and
gradually increases throughout training until it is above zero (≈ 0.25)
at the end of the experiment, with the exception of trials 500 and 740.
This is the exact opposite of xL. For xM, correlation between its norm
‖xM‖2 with learning rate generally increases with the intensity of train-
ing. However, this trend is not as obvious compared to other decomposi-
tion counterparts, and there are a greater number of sessions that cannot
be fit to this pattern. The correlation between the number of trials and
R values is summarized in Fig. 3. The results presented are robust with
similar values in filter thresholds.

This result further implies that the most association between learn-
ing or adaptability during the training process comes from the brain
signals that either vary smoothly (xL, regularity) or rapidly (xH, ran-
domness) with respect to the brain network. Therefore, the graph fre-
quency decomposition could be used to capture more informative brain
signals by filtering out non-informative counterparts, most likely asso-
ciated with middle graph frequencies. Besides, the positive association
between ‖xL‖2 and learning rates as well as the negative association be-
tween ‖xH‖2 and learning rates at the start of training indicates that it
favors learning to have more smooth, spread, and cooperative brain sig-
nals when we face an unfamiliar task. As we gradually become familiar
with the task, the smooth and cooperative signal distribution becomes
less and less important, and there is a level of exposure when such signal
distribution becomes destructive instead of constructive. We note that
the task in the 3 day experiment is more difficult compared to that of the
6 week experiment, and therefore the time when the cooperative signal
distribution starts to become detrimental (the point where the regression
line intercepts the horizontal line of R value equaling 0) is also compa-

rable in the two experiments, describing a certain level of familiarity to
the task. When we become highly familiar with the task, it favors further
learning to have varied, spiking, and competitive brain signals.

In the dataset evaluated here, we utilize the average coherence be-
tween time series at pairs of brain cortical and subcortical regions during
the training as the network. Hence, a concentration of brain activities
towards low graph frequencies would imply that activities on brain re-
gions that are generally cooperative are indeed similar. Simultaneously,
the interpretation of concentration of brain activities towards high graph
frequencies is that brain activities on brain regions that are generally
cooperative are in fact dissimilar. In terms of learning, one possible ex-
planation is that there are two different stages in learning: we start by
grasping the big picture of the task to perform relatively well, and then
we refine the details to perform better and to approach our limits.

Because the graph frequency analysis method presented in this pa-
per applies to any setting where signals are defined on top of a network
structure representing proximities between nodes, it would be interest-
ing in future to use this method to investigate other types of signals and
networks in neuroscience problems. As an example, in situations given
fMRI measurements on structural networks, concentration of signals in
low graph frequency components would imply functional activities do
behave according to the structural networks. Besides, it has been under-
stood that learning is different when one is unfamiliar or familiar with a
particular task – it is easy to improve performance at first exposure due
to the fact that one is far from their performance ceiling. It would there-
fore be interesting to utilize graph frequency decomposition to further
analyze the difference between learning scenarios at different stages of
familiarity, e.g. adaptability at first exposure and creativity when one
fully understands the components of the specific tasks.

6. CONCLUSION

We used graph spectrum methods to analyze functional brain networks
and signals during simple motor learning tasks. We discerned that brain
activities corresponding to different graph frequencies. Further, the
strong correlation between graph spectrum of brain networks with the
level of familiarity of tasks was observed, and the most contributing
frequency signatures at different task familiarity was recognized.
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