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ABSTRACT

In this paper, we introduce the Neural Acoustic Process-
ing Library (NAPLib), a toolbox containing novel processing
methods for real-time and offline analysis of neural activity in
response to speech. Our method divides the speech signal and
resultant neural activity into segmental units (e.g., phonemes),
allowing for fast and efficient computations that can be im-
plemented in real-time. NAPLib contains a suite of tools that
characterize various properties of the neural representation of
speech, which can be used for functionality such as charac-
terizing electrode tuning properties, brain mapping and brain
computer interfaces. The library is general and applicable
to both invasive and non-invasive recordings, including elec-
troencephalography (EEG), electrocorticography (ECoG) and
magnetoecnephalography (MEG). In this work, we describe
the structure of NAPLib, as well as demonstrating its use in
both EEG and ECoG. We believe NAPLib provides a valu-
able tool to both clinicians and researchers who are interested
in the representation of speech in the brain.

Index Terms— auditory neuroscience, EEG, ECoG,
brain mapping, real-time processing

1. INTRODUCTION/BACKGROUND

Humans are unique in their ability to understand speech. As
such, much research has gone into understanding the human
auditory cortex, a brain region that plays an important role in
the process of speech perception. However, progress in un-
derstanding the central auditory system has been hindered by
lack of tools that can effectively and efficiently quantify the
representation of speech at different stages of neural trans-
formations, a problem that plagues both invasive and non-
invasive recording methods.

Many non-invasive studies utilizing EEG and MEG in re-
cent years have focused on understanding speech process-
ing for applications to various hearing and language disor-
ders [1, 2, 3]. Additionally, invasive recordings can be used
to study auditory neuroscience, as well as performing brain
mapping, an essential clinical procedure for epilepsy patients
who go under surgical resection of seizure foci. Several ap-
proaches for brain mapping have already been developed, in-
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cluding electrical cortical stimulation (ECS) [4, 5], cortico-
cortical evoked potentials (CCEP) [6], and mapping based
on high gamma activity [7]. While these methods are effec-
tive for their intended applications, they do not provide infor-
mation about tuning properties of electrodes or characterize
the neural encoding of speech. Additionally, ECS can induce
seizures in subjects.

Traditionally, quantification of the tuning properties of
auditory brain regions is performed by calculating spectro-
temporal receptive fields (STRFs), which are linear maps be-
tween stimulus and response that quantify a neuron’s or neu-
ral population’s ideal stimulus [8]. However, STRFs suffer
from several drawbacks. First, STRFs assume a linear rela-
tionship between stimulus and response, an assumption which
has been proven false, particularly in higher-level processes
[9, 10]. Additionally, STRFs are dependent on the particular
algorithm chosen for regularization (e.g., norm and sparsity
constraints), which can limit their interpretability [11]. Fi-
nally, solving the linear regression typically requires the com-
putation of the inverse of large matrices, making them com-
putationally intractable for real-time systems.

In this paper, we present the Neural Acoustic Processing
Library (NAPLib)!, a library for studying brain regions in-
volved in speech processing. Recent studies have shown the
encoding of acoustic-phonetic features in speech cortices
[12]; since each phonemic category has unique spectro-
temporal properties, studying the responsiveness of neural
activity to these categories informs us about spectro-temporal
properties of responsive regions [13]. These methods do not
make linear model assumptions, and they are computationally
efficient meaning that they can be implemented in real-time
[12]. We include both real-time and offline processing tools,
and we demonstrate the use of this toolbox in both noninva-
sive and invasive neural recordings.

2. TOOLBOX DESCRIPTION

NAPLIib is comprised of two main libraries for real-time and
offline processing. The offline toolbox is developed in both
MATLAB and Python, and provides functionality for source

! Available at http:/naplab.ee.columbia.edu/NAPLib.
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selectivity analysis [12], quantification of response delay, and
analysis of phoneme similarity patterns in neural and acous-
tic space. The real-time toolbox, developed in Simulink,
provides quantification of electrode responses to speech and
shows the selectivity of sources to segmental units, such as
phonemes. Additionally, we provide a small, open-source
corpus of American English.

2.1. Speech stimuli

NAPLIib quantifies spatial and temporal properties of neural
responses to phoneme categories as subjects listen to continu-
ous speech. In order to implement this technique, the contin-
uous speech signal must be temporally aligned with the cor-
responding phoneme sequence. With the library, we provide
a small, open-source corpus of American English with forced
alignments generated using the Penn Phonetics Lab Forced
Aligner [14]. We provide 25 minutes of speech, consisting
of 148 utterances, 8450 phonemes and two speakers (a male
and a female). NAPLIib is generalizable to any phonetically
aligned corpus (e.g. TIMIT [15]). Additionally, there are
many open-source toolkits that can be used to generate forced
alignments for existing and custom corpora [16, 17].

2.2. Offline processing

The offline toolbox is developed in both MATLAB and in
Python. It contains three modules: data preprocessing, noise
reduction and artifact rejection, and phoneme analysis.

2.2.1. Preprocessing

The preprocessing module aligns the phoneme labels (or other
segmental unit) of the stimulus with the neural recording, al-
lows the user to choose a scalp map (EEG) or electrode loca-
tions (ECoG) for visualization purposes, and performs filter-
ing. For EEG, we provide zero-lag, FIR bandpass filter with
cut-off frequencies of 2 and 15 Hz. For ECoG, we provide
a filter bank to extract high gamma activity (envelop of 70
to 150 Hz), high gamma is correlated with neural spiking ac-
tivity and encodes phonetic feature information [18, 12]. In
offline processing, filters are non-causal and zero-phase.

2.2.2. Noise reduction

Users can choose from different noise reduction techniques
including common average referencing, principal component
analysis decomposition, and trial rejection based on visual in-
spection and setting a threshold.

2.2.3. Phoneme analysis

After preprocessing, denoising, and artifact rejection, the data
can be fed into the phoneme analysis pipeline. Phoneme anal-
ysis can be used to perform brain mapping for speech selec-
tive regions, finding response delay and phonetic selectivity
of electrodes, and quantifying the degree to which acoustic
variability is reflected in neural data.

Selection of segmental unit. At the start of phoneme
analysis, users can choose the unit that the rest of analysis
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will be based on. In addition to individual phonemes (de-
fault), we include functionality for grouping phones based on
phonetic features (manner of articulation, place of articula-
tion), phone length, and speakers. This allows for the study
of acoustic, phonetic, and speaker features. In addition, this
unit selection is easily generalizable and users can generate
their own method for creating segmental units (e.g., sylla-
bles). When performing phonetic analyses, we recommend
using individual phonemes for ECoG and EEG group anal-
ysis, while clustering labels into manner of articulation for
single subject EEG due to noise concerns.

Average electrode response to phonemes. The average
response elicited by each phoneme is an important tool for
visualizing the feature selectivity of an electrode [12]. The
average response R, ;. of electrode e for phoneme k occurring

at time points of 71,75, ..., T, in the stimulus is given by:
1 &
Rei(t) = N er(Tnk +t,e), (1)
nE=

where 7 (¢, , €) is the neural response at time of phone onset
and ¢ defines the temporal window over which the average is
computed.

Response delay. The latency between speech stimu-
lus S and neural response R varies based on the brain region
from which it was recorded [19]. We quantify the distinc-
tion between phonemes at each time point using the F-statistic
(between-group variability divided by within-group variabil-
ity) and define response delay as the time point that shows
maximum distinction between categories. Consider R, j (%)
as the response of electrode e to the n'" instance of phoneme
category k, where ¢ denotes the sample time after the onset of

phoneme. The response time is given by:
< 2ok Ni(Re (1) — Re(1))?/(K — 1) )
2 onk(Ben(t) = Rep(t))?/(N — K) (’2)

where K denotes the number of phoneme categories, IV de-
notes the total number of phones in the corpus (all categories),
Re k() is defined in (1), and R.(t) is the global mean of re-
sponses regardless of phoneme category. Categories are by
default individual phonemes, but this can be generalized to
any specified segmental unit.

Phoneme selectivity of channels. In order to charac-
terize the selectivity of the neural response to phonemic cat-
egories at individual electrodes, we calculate the phoneme
selectivity index (PSI) vectors as described in [12]. Each
electrode is characterized by a [Kx1] vector, with each ele-
ment corresponding to the PSI of one phoneme; each PSI has
a value ranging from O to K that quantifies the number of
phonemes that elicit a statistically distinguishable response
from the target phoneme (Wilcoxon rank-sum test).

Quantification of distinction between phonemes. We
calculate the distance (default is Euclidean) between the re-

T, = argmax
t



sponses to phonemes for each phoneme pair at every time
lag, yielding a time-varying pairwise phoneme distance ma-
trix. This analysis focuses on the similarities and distinctions
between categories rather than on individual items. We also
provide functionality to visualize the distance matrices in two
and three dimensions using multi-dimensional scaling (MDS)
[20] and t-SNE [21].

Comparison of phoneme properties between stimuli
and response. Speech is a continuous signal that changes
over time; even within a single category, the acoustic prop-
erties change from the start to the end of the phone. In or-
der to find how neural responses and acoustic properties of
speech sounds are related through time, we define a neural-
acoustic covariance matrix. This is a two-dimensional matrix
that demonstrates the similarity between patterns of phones in
the acoustic space and the corresponding neural responses at
each time point. The acoustic similarity matrix is calculated
using the acoustic spectrogram of phones [22].

Functional connectivity of electrodes. The functional
connectivity of recording regions is quantified by finding
the covariance between distinction patterns of different elec-
trodes.

Group analysis. We provide an option of group analysis
specifically recommended for analysis of EEG data when one
subject does not provide sufficient signal to noise ratio. In
this case, the response to the same phone is averaged between
different subjects, after which all of the other analyses can be
utilized.

2.3. Real-time processing

The real-time processing toolbox is implemented in Simulink
and utilizes similar methods to the offline toolbox, which are
simplified to create efficient computations.

Figure 1 illustrates the mechanism of real-time process-
ing. Audio is a sound file that includes the stimulus as one
channel and the phoneme labels as the other. As the subject
listens to continuous speech, the phoneme labels are sent to
the processor while the neural responses are recorded simul-
taneously. In preprocessing, users can choose between EEG
and ECoG filters, then, through a rate-transition module, both
phoneme labels and neural data will be resampled to 100 Hz.
Next, neural data will be saved in a buffer with a window size
of M samples (default: 600ms), and phoneme labels will be
delayed by NV samples. This defines the maximum number
of samples after the phoneme onset which goes to phoneme
response analyzer. For the data shown in Fig. 2A, M is equal
to 60 samples (600 ms) and N is equal to 50 samples (500
ms).

In the phoneme response analyser block of the toolbox the
following analysis are implemented: selection of segmental
unit, average electrode response to phonemes, response delay,
and phoneme selectivity.
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Fig. 1. Schematic of the real-time processing toolbox.

3. EXPERIMENTS

To show the efficacy of our toolbox, we demonstrate analyses
from neural recordings in both EEG and ECoG.

3.1. Neural Recordings

We recorded neural activity from subjects as they listened to
the provided NAPLib corpus. We recorded from 22 EEG
participants with a 62-channel recording system. The three
ECoG participants were undergoing neurological assessment
for epilepsy surgery; one patient had a high-density micro-
electrode grid array over temporal lobe, while the other had
stereo EEG electrodes implanted. All subjects provided writ-
ten informed consent. The Institutional Review board (IRB)
of Columbia University at Morningside Campus approved all
procedures.
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Fig. 2. Average response to phonemes in (A) EEG and (B)
ECoG. The PSI vector for the ECoG electrode is shown
at right. (C) Average spectrogram of combined phonemes
/jh,ch,s,sh/ and the STRF of the ECoG electrode.
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Fig. 3. F-test over time and response delay for acoustic
phonemes (gray), one electrode in EEG (red) and one elec-
trode in ECoG (blue).

3.2. Average electrode response and phoneme selectivity
in EEG and ECoG

In this section we demonstrate how NAPLib can be used to vi-
sualize and quantify phonetic selectivity in both invasive and
non-invasive recordings. Results shown are using the offline
module, but we would like to emphasize that these analyses
can also be implemented using the real-time module.

Figure 2A shows the average response of an example elec-
trode (FCz) in EEG generated by group analysis including 22
subjects. Due to poor spatial resolution, it is typical to find
broad responses to many phonemic categories. Because EEG
recordings are also noisy, we also recommend averaging re-
sponses over subjects using group analysis.

ECoG recordings provide much higher spatial resolution,
resulting in the average response and corresponding PSI vec-
tor shown in Figure 2B from a depth electrode in Heschl’s
gyrus. This electrode responds to unvoiced sibilants and
affricates (PSI > 25), which all contain strong power in
high frequency channels. This suggests that this electrode
has broad tuning to high frequencies, and indeed, we can see
that the STRF of this electrode closely matches the average
spectrogram of these phonemes (Figure 2C).

3.3. Response delay

Figure 3 shows the F-test value at each time point based on the
onse of phonemes. Phonemes are categorised based on man-
ners of articulation. Figure illustrated the time differences
between acoustic phonemes, ECoG (an electrode in Heschl’s
gyrus), and EEG (FCz, 22 subjects). The local maxima are
denoted with asterisks.
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Fig. 4. Duration needed to find a significant electrode

(ANOVA F-test). Error bars show standard deviation.
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Fig. 5. (A) Scalp locations of responsive electrodes to speech
over a duration 10 minutes. Percentages indicate the fraction
of the recording time that an electrode displayed a statisti-
cally significant response to speech (ANOVA F-test). (B) The
location of responsive grid electrodes to speech in a subject
implanted with an ECoG array.

3.4. Mapping time

In order to quantify the duration which is needed to find a
significant phoneme response, we used the ANOVA F-test.
In EEG, the reported duration is based on significant distinc-
tion between manners of articulation. In ECoG, the duration
for both manner of articulation and individual phoneme
categories is reported. The p-value is assessed by the F-
distribution with correction for multiple comparisons imple-
mented via false discovery rate (¢ < 0.01). The calculated
time duration does not include the natural silences of speech.

3.5. Locating speech-responsive regions

Determining the location of response is important for a va-
riety of both clinical and research applications. Figure SA
shows the percentage of time that EEG electrode responses
display a statistically significant response to speech over a 10
minute duration. Figure 5B shows the time needed to elicit
a statistically significant response to speech a patient with an
implanted ECoG microelectrode array.

4. CONCLUSIONS

In this paper we introduce the Neural Acoustic Processing Li-
brary (NAPLIib), a free and open source toolbox for studying
the neural representation of speech. The toolbox quantifies
temporal and spectral responsiveness of electrodes based on
responses to segmental linguistic categories (phonemes). Us-
ing such an approach allows for fast, efficient computations
that can be implemented in real-time. As a proof of con-
cept, we demonstrate use of the toolbox using both invasive
(ECoG) and non-invasive (EEG) recordings.
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