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ABSTRACT
We consider the problem of estimating the power spectral
density of the neural covariates underlying the spiking of a
neuronal population. We assume the spiking of the neuronal
ensemble to be described by Bernoulli statistics. Further-
more, we consider the conditional intensity function to be the
logistic map of a second-order stationary process with sparse
frequency content. Using the binary spiking data recorded
from the population, we calculate the maximum a posteriori
estimate of the power spectral density of the process while
enforcing sparsity-promoting priors on the estimate. Using
both simulated and clinically recorded data, we show that our
method outperforms the existing methods for extracting a fre-
quency domain representation from the spiking data of a neu-
ronal population.

Index Terms— point process models; power spectral
density; spectral estimation; neural signal processing.

1. INTRODUCTION

Spectral analysis of electroencephalography (EEG) record-
ings has long been used for research and diagnosis purposes
such as the identification of sleep disorders [1, 2] and epilep-
tic seizures [3, 4]. With the development of invasive recording
procedures, single- and multi- unit recordings have increas-
ingly become popular in neural sciences [5, 6]. These data
do not suffer from the low spatial resolution of non-invasive
measurements such as EEG, as they capture the spiking ac-
tivity of a localized population neurons; however, their binary
nature introduces various signal processing challenges [7].

Recently, the theory of point processes has provided a
mathematical framework to model and analyze neuronal data
such as single and multi unit recordings in the time domain
[8, 9, 10]. Following the common frequency-domain analysis
of neural data such as EEG, existing methods for point pro-
cess spectral estimation often compute a continuous estimate
of the spiking rate and analyze the power spectral density
(PSD) of this estimate. The spiking rate estimation is either
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done by simply smoothing the spiking histogram [11, 12, 13]
or using generalized linear Gaussian state-space models to es-
timate the conditional intensity function (CIF) of the point
process [14, 15]. However, these approaches suffer from the
following shortcomings: Firstly, they are limited in terms of
their spectral resolution as smoothing in the time domain for
spiking rate estimation results in distortion in the frequency
domain. Secondly, second-order statistics of the underlying
time-series are needed for spectral estimation, and even if the
spiking rate is estimated correctly, the second-order statistics
need not be. Thirdly, current methods do not account for spec-
tral sparsity which is often observed in the frequency domain
analysis of biological data such as EEG.

In this work, we address the above shortcomings by
casting the point process spectral estimation problem as a
discrete-parameter harmonic spectral estimation in which
the the second moments of the harmonic process driving
the point process are estimated. To this end, we consider a
conditional Bernoulli point process framework and model its
CIF as the logistic map of a harmonic process. Then, we use
an Expectation-Maximization (EM) algorithm to compute
maximum a posteriori (MAP) estimate of the PSD of the
harmonic process as the spectral representation of point pro-
cess using the observed spiking data and sparsity-promoting
priors. Simulation results and application to real multi-unit
data recorded under general anesthesia verifies the superior
performance of our method compared to existing techniques.

The rest of the paper is organized as follows: Section 2
introduces our model for the spiking activity of a population
of neurons driven by a harmonic process. In Section 3, we
derive the sparse MAP estimator of the PSD associated with
the harmonic process. Section 4 provides results for simulated
data and real multi-unit recordings under general anesthesia,
comparing our sparse PSD estimates with existing methods.
This is followed by our concluding remarks in Section 5.

2. PROBLEM FORMULATION

A point process can be fully characterized by its Conditional
Intensity Function (CIF). For t ∈ (0, T ], the CIF of a point

841978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



process is defined as [16]

λ(t|Ht) := lim
∆→0

P(N(t+ ∆)−N(t) = 1|Ht)

∆
, (1)

where Ht and N(t) denote respectively the spiking history in
(0, t) and the number of spikes in (0, t]. If the point process
is discretized by small enough bins of size ∆, the data in each
bin (nk) can be approximated by a Bernoulli random vari-
able with the success probability of λk := λ

(
k∆|Hk∆

)
∆,

for 0 ≤ k ≤ K, where K = d T∆e. Due to the absolute refrac-
tory period of neurons, the sampling period of ∆ ∼ 1 ms is
typically sufficient to ensure that at most one spike occurs in
any bin [8].

The oscillatory patterns in neuronal spiking can be di-
rectly attributed to its CIF. Thus, a spectral analysis of the CIF
would provide an informative frequency domain representa-
tion of the point process. We consider an ensemble of L neu-
rons, whose spiking data is denoted by D := {n(`)

k }
L,K
`=1,k=1,

with n
(`)
k denoting the data of neuron ` in bin k, and as-

sume that they are driven by the same CIF. This assumption is
plausible for multi-unit recordings as they are obtained from
neighboring neurons [5]. To associate a power spectral den-
sity with the mutual CIF, we consider the CIF to be the lo-
gistic map of a second-order stationary signal with mean µ.
Denoting the samples of the second-order stationary process
by xk for 0 ≤ k ≤ K, the complete discretized model can be
expressed as:λk =

1

1 + e−xk
, 1 ≤ k ≤ K

n
(`)
k ∼ Bernoulli(λk), 1 ≤ k ≤ K, 1 ≤ ` ≤ L

. (2)

The objective is then to calculate a sparse estimate of the PSD
of xk as the spectral representation of the neural spiking data
having observed D.

3. BAYESIAN ESTIMATION OF THE PSD

According to the Spectral Representation Theorem [17], for
the zero-mean and second-order stationary signal xk−µ with
PSD S(ω), there exists a continuous, orthogonal increment,
and complex process Z(ω) such that

xk − µ =

∫ 2π

0

ejωkdZ(ω) (3)

where the integral is in the Riemann-Stieltjes sense and
E{|dZ(ω)|2} = S(ω)dω.

We consider a discrete approximation to the PSD S(ω)
which results in Z(ω) being constant over intervals of length
π
N for large enough N [17]. Thus, Z(ω) can be replaced by a
jump process in [0, π) with jumps of π

N (ai + jbi) at ωi = iπ
N

for i = 1, 2, . . . , N−1, where ai and bi are random variables
and N controls the degree of approximation. Following the
Spectral Representation Theorem and the discrete PSD ap-
proximation, the PSD at ωi would be S(ωi) = π2

N2E{a2
i +b2i }.

Furthermore, considering xk to be real, Eq. (3) can be sim-
plified as:

xk − µ =
2π

N

N−1∑
i=1

(
ai cos(ωik)− bi sin(ωik)

)
. (4)

Letting x = [x1, x2, . . . , xK ]T ∈ RK , v = [ N2πµ, a1, b1, . . .

, aN , bN ]T ∈ R2N−1, and defining A ∈ RK×(2N−1) as

A := 2π
N


1 cos( πN ) − sin( πN ) . . . cos

(
(N−1)π

N

)
− sin

(
(N−1)π

N

)
1 cos( 2π

N ) − sin( 2π
N ) . . . cos

(
2(N−1)π

N

)
− sin

(
2(N−1)π

N

)
...

...
...

. . .
...

...

1 cos(KπN ) − sin(KπN ) . . . cos
(
K(N−1)π

N

)
− sin

(
K(N−1)π

N

)

,
(5)

we can write Eq. (4) as x = Av. We further assume that
the process Z(ω) is Gaussian. Therefore, based on the def-
inition of random vector v, we have vi ∼ N (0, σ2

i ), for
i = 2, . . . , 2N −1, and due to the orthogonality of the in-
crements of process Z(ω), vi’s are independent. This re-
sults in S(ωi) = π2

N2 (σ2
2i + σ2

2i+1), for ωi = iπ
N and i =

1, 2, . . . , N − 1. The estimation of µ is not of particular im-
portance as our goal is to infer the oscillatory patterns in the
CIF. However, in order to have a consistent prior on all the
elements of v, we assume an independent Gaussian prior on
µ such that v1 ∼ N (0, σ2

1). Therefore, an estimate of the
parameter vector θ := [σ2

1 , σ
2
2 , ..., σ

2
2N−1]T results in an esti-

mate of the approximated PSD of xk.
To obtain an sparse estimate of θ in the Bayesian estima-

tion setting, we enforce independent exponential priors with
parameter γ on the elements of θ, i.e. log fθ(θ) = (2N−
1) log γ−γ

∑2N−1
i=1 σ2

i , where we estimate γ through two-fold
cross validation [18]. This log-prior is equivalent to the `1-
norm penalty of θ which is known to promote sparsity. Thus,
the maximum a posterior (MAP) estimate of θ is defined as:

θ̂MAP = arg max
θ

(
logP (D|θ) + log fθ(θ)

)
(6)

As P (D|θ) is an intractable function of θ and the vector
v acts as a latent variable in the Bayesian estimation of θ,
we employ the Expectation-Maximization (EM) algorithm to
calculate the MAP estimate in Eq. (6) [19, 20].

The E Step: Denote the parameter vector estimate at the
rth iteration of the EM algorithm by θ̂(r) =

[
σ2

1
(r)
, σ2

2
(r)
, · · ·

, σ2
2N−1

(r)]T . In the E step, we calculate the expectation of
the complete data log-likelihood as:

Q
(
θ|θ̂(r)

)
:= Ev|D,θ̂(r)

{
log f(D,v|θ)

}
+ log fθ(θ)

= Ev|D,θ̂(r)

{
log fv|θ(v|θ)

}
+ log fθ(θ) + cnst.

=
2N−1∑
i=2

(
− 1

2
log σ2

i −
1

2σ2
i

Ev|D,θ̂(r)

{
v2
i

}
− γσ2

i

)
+ cnst. (7)
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where we have used the conditional independence relation
P (D|v,θ) = P (D|v). In (7), the term cnst. represents
all terms which are not functions of θ. Calculating the
distribution of v|D, θ̂(r) involves intractable integrals and
Monte Carlo methods are not efficient for calculating the
term Ev|D,θ̂(r)

{
v2
i

}
in (7) as they have to be performed

in every EM iteration. However, the density of v|D, θ̂(r)

can be approximated by a multivariate Gaussian density
N
(
µ

(r)
v ,Σ

(r)
v

)
[8, 10]. Similar to [8, 10], we calculate µ

(r)
v

as the mode of the log-density log fv|D,θ̂(r)(v|D, θ̂(r)) in (8)
given by:

µ(r)
v = arg max

v

(
logP (D|v) + log fv|θ̂(r)(v|θ̂(r))

)
= arg max

v

( K∑
k=1

L∑
`=1

n
(`)
k (Av)k − log

(
1 + e(Av)k

)
−

2N−1∑
i=2

v2
i

2σ2
i

(r)

)
, (8)

and evaluate the Hessian of this log-density at the calculated

µ
(r)
v as −

(
Σ

(r)
v

)−1

[19].
The maximization problem in (8) is concave, and the

Hessian is negative definite due to the diagonal terms of
the form v2i

2σ2
i
(r) . Therefore, we use the standard Newton’s

method to efficiently compute µ
(r)
v . It is worth noting that

the ensemble average spiking signal n̄k := 1
L

∑L
`=1 n

(`)
k

for k = 1, 2, · · · ,K, which is often referred to as the Peri-
stimulus Time Histogram (PSTH), includes all the spiking
information we need to calculate µ

(r)
v due to our mutual CIF

assumption. The multivariate Gaussian estimate results in

Ev|D,θ̂(r)

{
v2
i

}
=
(
(µ

(r)
v )i

)2
+(Σ

(r)
v )i,i for the E step, which

we denote by E(r)
i for notational simplicity.

The M Step: Having calculated the positive E(r)
i ’s, we

maximize Q(θ|θ̂(r)) in (7) with respect to θ in the M step.
Q(θ|θ̂(r)) is a quasi-concave function over the positive or-
thant with a unique maximizer which is the non-negative so-
lution of a quadratic equation. Hence, the update rule of the
EM algorithm becomes:

(θ̂(r+1))i = σ2
i

(r+1)
=
−1+

√
1+8γE

(r)
i

4γ , 1 ≤ i ≤ 2N−1.
(9)

4. APPLICATION TO SIMULATED AND REAL DATA

As for our simulated data, we consider the dual-tone signal of
the form

x(t) = 1.48 cos(2πf0t) + 0.685 cos(2πf1t) + 0.17n(t)−5.7
(10)

with f0 = 1 Hz and f1 = 10 Hz sampled at fs = 300 Hz
as the underlying harmonic process in our model, and n(t)

representing a zero-mean white Gaussian noise with unit vari-
ance. A total ofK = 1000 samples are considered forL = 10
neurons. The bias term of −5.7 is chosen to make sure that
the resulting spiking rate of 0.056 in PSTH is low enough
and consistent with real-world neuronal spiking rates. Figure
1 shows the harmonic process as well as the resulting raster
plot of the ensemble according to our model.
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Fig. 1: (a) Dual-tone signal x1:K (b) Raster plot of the ensemble

Figures 2-(a) and 2-(b) respectively show the resulting
PSTH and its smoothed versions using wide and narrow
Gaussian kernels. Figure 2-(c) illustrates the normalized
multitaper estimate [21] of the PSD corresponding to the
smoothed PSTH for both the narrow and wide kernels. The
multitaper estimate is among the most reliable nonparametric
spectral estimation methods.
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Fig. 2: Noisy dual-tone CIF model: (a) Raw PSTH of the data n̄k with
0.056 spiking rate (b) Normalized smoothed PSTH using narrow and wide
Gaussian kernels (c) Normalized multitaper PSD estimate of the smoothed
PSTHs (d) Normalized PSD estimate of the proposed method after 130 EM
iterations
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The foregoing method of estimating the PSD of the
smoothed PSTH, which we denote by PSTH-PSD, is one
of the most commonly-used methods for extracting the spec-
tral representation of the spiking data [11, 12, 13]. We have
considered a frequency spacing of 0.125Hz for the PSD esti-
mates here, which corresponds to N = 1200 in our proposed
method, and DC components of the normalized PSD’s are
eliminated in the figures. The PSD estimate corresponding
to the narrow smoothing kernel (Figure 2-(c), green trace)
detects the two peaks at 1 Hz and 10 Hz, but has a high
variability in higher frequencies. Also, two spurious peaks at
2 Hz and 9 Hz are detected in the PSD. On the other hand, the
estimate corresponding to the wide smoothing kernel (Figure
2-(c), dotted red trace) has a smaller variability but misses
the 10 Hz peak. These results show the high sensitivity of the
PSTH-PSD approach to the choice of the smoothing kernel
and the absence of a criterion for choosing one. The result
of our proposed method in Figure 2-(d) with γopt = 10−4

(obtained by two-fold cross-validation) fully recovers the two
frequency components after 130 EM iterations.

Finally, we apply our algorithm to multi-unit recordings
in [22] from a human subject under Propofol-induced general
anesthesia. The original sampling rate of 1 kHz was reduced
by the factor of 40 to reduce computational complexity, and
a time window of 50s was considered (K = 1250). Out of
the 41 neurons in the data set, we have considered the ones
with at least two spikes in the 50s time frame (L = 27). Fig-
ure 3 shows the raster plot of the neuronal ensemble with the
spiking rate of 0.1064 in the PSTH.
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Fig. 3: Raster plot of the real multi-unit recordings in [22]

Figure 4 shows the PSD estimates using our proposed
method as well as the PSTH-PSD estimates. All PSD’s have
the frequency spacing of 0.02Hz corresponding to N = 625
in our method. Similar to the foregoing simulation results,
Figure 4-(c) shows the considerable variability of the narrow
kernel PSTH-PSD in higher frequencies while the wide ker-
nel PSTH-PSD suppresses the PSD components above 0.4Hz,
implying the high sensitivity of the estimates to the choice of
the kernel width. However, our method in Fig. 4-(d), after
100 EM iterations, calculates a sparse PSD with the regular-
ization parameter obtained by two-fold cross-validation. It
is worth noting that the results of the state-space model of
[10, 14, 15] were very similar to the wide Gaussian kernel
PSTH-PSD [19], and thus have not been shown in Figures 2
and 4 for brevity.
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Fig. 4: Neuronal spiking data from anesthesia: (a) Raw PSTH of the data
n̄k with 0.1064 spiking rate (b) Normalized smoothed PSTH using narrow
and wide Gaussian kernels (c) Normalized multitaper PSD estimate of the
smoothed PSTHs (d) Normalized PSD estimate of the proposed method after
100 EM iterations

5. CONCLUSION
Although the theory of point process provides a concrete
mathematical framework for analyzing binary data in the
time domain, there has not been much work on extending
this theory to incorporate a spectral representation for binary
data. Existing approaches calculate an estimate of the spiking
rate or the CIF driving the point process by smoothing the
PSTH in the time domain or fitting a state-space model to
the data. These methods have drawbacks such as limiting the
resolution in frequency domain due to smoothing in the time
domain and not taking into account the underlying sparse
spectral structure often observed in biological signals.

In this paper, we have addressed these issues by introduc-
ing a model for spectral estimation from spiking data which
directly estimates the PSD as the second-order moments of
the underlying process from the observed binary data and em-
ploys sparsity-promoting priors for estimation. Application
to simulated and real data reveals that our proposed method
outperforms existing methods for calculating a point process
spectral representation. Finally, although we have only fo-
cused on the application of our spectral estimation method to
neuronal multi-unit recordings, our techniques can be simi-
larly applied to any binary data exhibiting oscillatory behav-
ior.
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