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ABSTRACT

In this paper we address the detection of Alzheimer’s disease based
solely on EEG recordings. We assume that the state of Alzheimer’s
disease can be described by a latent manifold, captured by the EEG
sensors and apply alternating diffusion to reveal this common un-
derlying manifold from multiple EEG sensors. We show that based
on a small number of EEG electrodes, a new representation can be
obtained, which allows a clear distinction between healthy subjects
and Alzheimer patients in different disease stages.

Index Terms— Manifold Learning, Alternating Diffusion,
Electroencephalogram, Alzheimer’s Disease

1. INTRODUCTION

Alzheimer’s disease, the most prevalent form of dementia [1], is
a progressive neurodegenerative disorder [1] that becomes more
prevalent with increasing age. Clinical manifestations include de-
cline in cognitive and behavioral functions like memory, thinking
and language skills. Alzheimer’s disease has a long preclinical
phase and a disease duration of 8-10 years [2]. Alzheimer’s disease
is commonly diagnosed according to core clinical manifestations
and assessing their change with time [3]. At the time, Alzheimer’s
pathological changes could not be measured in vivo, so disease
could be definitively diagnosed only after death. With the advent of
cerebrospinal fluid (CSF) and imaging biomarkers, it is now possible
to diagnose the Alzheimer’s disease pathophysiological processes
early in the course of the disease when there is still no evidence of
cognitive impairment. Reliable biomarkers for disease progression
are still lacking.

Electroencephalogram (EEG) was shown to be a reliable tool
in the research and diagnosis of dementia, since frequency content
and EEG complexity change as the disease progresses, due to neu-
ronal connectivity decline [4]. Numerous studies have previously
addressed the classification of Alzheimer’s disease stage based on
EEG recordings [5–8]. For example, in [6], an extensive review of
different feature extraction methods and classification algorithms is
presented. The authors show that a classification success rate of 0.88
can be achieved. However, a reliable classification of Alzheimer’s
disease state based on EEG recordings remains a challenge due to
the significant artifacts and noise introduced by the EEG sensors.

In this paper, we analyze EEG recordings and assume that the
state of Alzheimer’s disease can be described by a latent manifold
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which is captured by the EEG sensors. Each sensor captures a de-
formed manifold due to the position of the electrodes, subject move-
ment, measurement noise and non-linearities related to the cranium
[9]. Therefore, we are interested in revealing the true underlying
manifold, common to different EEG sensors. For this purpose, we
apply alternating diffusion [10,11] to several sensors of EEG record-
ings. We demonstrate the ability of alternating diffusion to extract
meaningful variables in a real application involving several sensors.

The paper is organized as follows. In Section 2 we present the
basic concepts of diffusion maps [12], which lay the foundation to al-
ternating diffusion. In Section 3, the problem formulation and alter-
nating diffusion framework are presented. Finally, in Section 4, ex-
perimental results of the application of alternating diffusion to EEG
recordings of Alzheimer patients and control subjects are presented.

2. BACKGROUND

Consider a data set of samples, e.g., data measured by a single EEG
channel. Based on the recorded data, we wish to construct a low di-
mensional representation which describes the intrinsic properties of
the system. We assume that the data approximately lie on a low di-
mensional Riemannian manifoldM, which is embedded in a higher
dimensional ambient space. This manifold describes the latent state
of the system. The data are samples onM with a density function q.
Based on these data, we construct a new embedding which represents
the underlying manifold by applying diffusion maps [12]. Following
is a brief description of the setting and algorithm of diffusion maps.

Given a discrete set of samples {xi}Ni=1 ,xi ∈ RM , we con-
struct a pairwise affinity kernel kε (xi,xj) according to

kε (xi,xj) = exp

{
−‖xi − xj‖

2

2ε

}
(1)

where ‖ · ‖2 denotes the Euclidean norm and ε > 0 is the scale
parameter which induces a notion of locality.

The kernel in (1) forms a weighted graphG in which the vertices
are the data samples and the kernel defines the weights of the edges,
i.e., the weight of the edge connecting the vertex xi and the vertex
xj is kε (xi,xj).

The kernel is then normalized by dε (xj) =
∑N
i=1 kε (xi,xj)

as follows

pε (xi,xj) =
kε (xi,xj)

dε (xj)
(2)

The resulting normalized matrix Pi,j = pε (xi,xj) is column
stochastic and can be interpreted as the transposed transition proba-
bility matrix of a Markov chain on the graph vertices [13].
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Table 1: Subject classification details by device.

No. of Subjects

Device Control Mild Moderate Severe Total

1 6 2 1 4 13

2 5 2 4 2 13

MMSE score 30/30 20-28/30 15-19/30 0-15/30

Table 2: Pre-processing parameters for each device

Device Sampling
rate [Hz]

BPF
Passband [Hz]

EEG Channels
used for AD

Scattering Transform
Window size [sec]

Total Size
per Subject [sec]

1 512 [5,80] Fpz,Fz,Cz 1 40

2 500 [2,80] P7,P8 1.024 40

For sufficiently large ε, the graph is well connected, and the
matrix P has an eigenvalue decomposition in which the eigenval-
ues, when denoted in descending order, satisfy 1 = λ0 > λ1 ≥
λ2 ≥ · · · ≥ λN−1 ≥ 0. Based on the left eigenvectors of P, de-
noted by φn, corresponding to the ` largest non-trivial eigenvalues
λ1, λ2, . . . , λ`, we define an embedding of the given data set into an
Euclidean space in R`:

Φ (xi) = [φ1 (i) , ..., φ` (i)] (3)

where ` is the dimensionality of the new embedded space.
It was shown in [14] that in the limit N → ∞, ε → 0 the

discrete Markov chain converges to a continuous diffusion process.
Furthermore, the discrete matrix (I−P) /ε, where I is the identity
matrix, converges to the following diffusion operator on the mani-
foldM

lim
ε→0

lim
N→∞

I−P

ε
= ∆− ∆q

q
(4)

where ∆ is the Laplace operator and q is the density of the points on
M. Note that when the density function q is constant (uniform den-
sity), this operator approximates the Laplace-Beltrami operator on
M [12]. Therefore, the embedding defined in (3) can be associated
with the spectral decomposition of the Laplace-Beltrami operator on
the manifoldM.

Recently, several studies have applied such manifold learning
methods to analyze medical data, e.g. EEG recordings, heart rate
measurements and respiratory sensors [15–20]. For example, in [15],
alternating diffusion is applied to multimodal sleep recordings which
include an airflow sensor and an abdominal motion sensor. In this
paper, the authors showed that by applying alternating diffusion, the
common source of variability in these sensors is extracted and that
it captures the sleep stage information. In another work [20], the
authors apply weighted locally linear embedding (WLLE) to EEG
recordings in order to detect epileptic seizures. The WLLE method
is used to obtain intrinsic features which are then classified using
support vector machine (SVM).

3. PROPOSED ALGORITHM

Consider M EEG sensors measuring electrical brain activity. Our
basic assumption is that the EEG sensors measure similar relevant
information. Yet, EEG signals are known to be very noisy. To en-
code these two properties, we assume that the signal samples from

the M sensors share a hidden underlying geometric structure (man-
ifold), whereas each sensor introduces additional sensor-specific in-
terferences and noise.

Let xk,i denote N signal samples from the k-th EEG sensor,
where i = 1, . . . , N and k = 1, . . . ,M . We assume that xk,i are
samples from a (hidden) composition of spaces Mk × Nk, where
Nk represents the space of sensor-specific interferences and noise,
andMk = gk(M) is the k-th sensor view of a common manifold
M through some arbitrary unknown function gk.

In the context of this application, the common underlying man-
ifold M represents intrinsic properties of the examined system,
specifically, the severity of Alzheimer’s disease. In contrast, each
sensor-specific spaceNk captures various artifacts and measurement
noise specific to the sensor.

Our goal is therefore to infer a parametrization of the common
manifold in a data-driven manner from the signal samples xk,i, with-
out assuming any additional rigid model assumptions. By accom-
plishing this, we show that the obtained parametrization is in good
agreement with the severity and progression of Alzheimer’s disease.

For this purpose, we apply alternating diffusion [10, 11, 15] to
the M sensors. The alternating diffusion method is described in the
remainder of this section. We note that in this work, we consider
more than two sensors due to the significant noise introduced by the
EEG modality.

Given data recorded by M sensors, diffusion maps is applied to
each sensor, resulting inM operators {Pk}Mk=1 calculated according
to (2). The alternating diffusion operator is then defined by

A =

M∏
k=1

Pk (5)

Note that A is a column-stochastic matrix. As a result, it can be seen
as a transition probability matrix of a Markov chain, where each step
consists of M steps corresponding to Pk. Several consecutive steps
of this Markov chain are alternating steps of Pk. Intuitively, in each
step k, the application of the operator Pk can be interpreted as a
propagation of the diffusion from each point to the highly connected
points to it according to the graph structure obtained by sensor k. In
the consecutive step, Pk+1 is applied which results in a propagation
from each point to the highly connected points to it based on sensor
k + 1. Combining two consecutive steps results in an ”effective”
propagation from each point to points which are highly connected to
it in both sensors k and k + 1. Therefore, in the resulting operator
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Fig. 1: Alternating diffusion coordinates of the first EEG device.
The points are colored based on the MMSE score of each subject.

A (comprising of M steps), a diffusion propagation between one
point to another is attained only if these points are connected in the
graph structures obtained by all sensors. As we will indicate in the
sequel, preserving connections obtained by all sensors enhances the
common structure underlying all sensors, as well as attenuating the
sensor-specific variables.

Based on the Eigenvalue Decomposition of A, we define an em-
bedding of the given data sets into an Euclidean space, similarly to
(3); the embedding is constructed by taking the first ` left eigenvec-
tors, ψn, of A, corresponding to the largest ` eigenvalues:

Ψ (xi) = [ψ1 (i) , . . . ψ` (i)] (6)

In [11] it was shown that in the limit N → ∞, ε → 0, A con-
verges to a continuous operator defined on the common manifold
M, similarly to (4). As a result, the alternating diffusion embedding
(6) is equivalent to the diffusion maps embedding (3) we would have
obtained if we had direct access to samples from the hidden common
manifoldM. This implies that the embedding defined in (6) can be
seen as a parametrization of the common hidden manifoldM, ob-
tained from deformed and noisy samples from multiple sensors.

Note that the construction of the embedding described in this
section is essentially feature extraction which provides a new feature
space, representing the EEG data from multiple sensors. The ob-
tained features can be used as an input for classification algorithms.

To summarize, the main challenges in the analysis of EEG data
are the significant noise and the integration of information from the
different EEG sensors. The proposed algorithm provides a natural
solution for both problems. By combining the different sensors us-
ing alternating diffusion we obtain non-linear filtering abilities, re-
veal the common structures, which represent underlying properties
of the EEG data, and significantly attenuate (sensor-specific) noise
and interferences.

4. REPRESENTING EEG DATA USING ALTERNATING
DIFFUSION

We applied alternating diffusion to EEG recordings of Alzheimer’s
disease patients and healthy subjects in order to assess disease sever-
ity. We analyzed EEG recordings of 26 subjects in resting state.
Two different EEG devices were used to record the EEG signals,
each containing 64 electrodes. Due to significant differences in noise
levels between the output of the two devices, recordings from each
device were analyzed separately. Details regarding the two subject
groups, recorded by the different devices, appear in Table 1. The dis-
ease state of the subjects was determined based on the Mini Mental

Fig. 2: Alternating diffusion coordinates of the second EEG device.
The points are colored based on the MMSE score of each subject.

State Examination (MMSE) test. The MMSE score associated with
each disease state appears in Table 1.

An initial pre-processing stage was performed in which a band-
pass filter (BPF) and a notch filter at 50[Hz] were applied. The pass-
band frequencies used for each EEG device are presented in Table 2.
The BPF frequencies were selected such that frequencies related to
alpha, beta, gamma and delta bands are mostly preserved and frquen-
cies with dominant noise are filtered. These frequency bands have
been shown to contain significant differences in Alzheimer patients
compared with healthy subjects [21].

After the pre-processing stage, recordings from each subject
were divided into short time segments (see Table 2, for exact time
frames/window sizes), and the Scattering Transform [22] was ap-
plied to each time segment, in each electrode separately. The
Scattering Transform is a translation invariant transform which was
shown to be stable to time deformations; it is computed by applying
a cascade of wavelet and modulus operators. This transform builds
an invariant and informative signal representation and was applied
in order to obtain meaningful features. For each EEG electrode and
each EEG device, the Scattering Transforms of all subjects were
concatenated to obtain a matrix of m×N elements, where m is the
dimension of the Scattering Transform output and N is the number
of time segments from all subjects recorded by the same EEG de-
vice. Note that we are combining recordings of different subjects
from the same electrode, although the exact position of the electrode
might slightly change due to movement of the EEG cap. In this
setting we neglect these differences and assume that the data from
different subjects can be combined. We further note that the scatter
plots presented in Figure 1 and Figure 2 depict that our framework
indeed overcomes these differences and embed subjects based on
their disease state.

Based on the resulting m × N matrix, the affinity kernel de-
scribed in (1) was constructed for each electrode. This resulted in
kernel matrices of size N × N , in which each matrix entry repre-
sents the affinity between two time segments, based on data from
one EEG electrode.

Finally, alternating diffusion was applied to recordings from
each device separately. For each device, several combinations of 2
or 3 electrodes were examined by multiplying the normalized ker-
nels (Markov matrices) (2) corresponding to the chosen electrodes
and then by calculating the eigenvectors of the resulting matrix.
Figure 1 and Figure 2 present exemplary results of the two EEG de-
vices. The labels of the used electrodes (channels) from each device
are presented in Table 2. These electrodes were chosen empirically,
however, several different combinations led to similar satisfactory
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(a) (b) (c)

Fig. 3: Examples of different SVM hyperplanes which separate the control group and Alzheimer group. (a) Application of SVM with a
radial basis function to the embedding of the first EEG device. (b) Application of linear SVM to the embedding of the first EEG device. (c)
Application of SVM with a quadric function to the embedding of the second EEG device.

Table 3: Comparison of the classification based on alternating dif-
fusion coordinates with diffusion maps and the scattering transform.

Alternating Diffusion Scattering

Diffusion Maps Transform

Healthy Subjects 10/11 7/11 5/11

Alzheimer Patients 13/15 11/15 10/15

results. We note that only a small number of electrodes was con-
sidered since alternating diffusion reveals only common features
in all sensors. Therefore, when combining too many electrodes,
informative features might be lost.

In Figure 1 and Figure 2, 3D scatter plots of the first three eigen-
vectors calculated by alternating diffusion are presented. Each point
in these plots corresponds to one time segment of a subject and is col-
ored according to the MMSE score of that subject. Figure 1 presents
the data from Device 1 and Figure 2 presents the data from Device 2.
Both figures depict that the new coordinate system, obtained by al-
ternating diffusion, creates an embedding, which separates different
disease states to different locations in the constructed 3D space. We
note that in this embedding, healthy subjects are grouped together
and Alzheimer patients are more dispersed. This is expected due
to large variability between different Alzheimer patients, even when
diagnosed with the same MMSE score. We emphasize that the plots
in Figure 1 and Figure 2 were constructed in a purely data-driven
manner, without prior knowledge on the true subject classification.
Therefore, these figures illustrate that alternating diffusion can be ap-
plied to EEG recordings in order to obtain a new coordinate system,
in which Alzheimer patients and healthy subjects can be classified
based on Euclidean proximity. Furthermore, based on the embed-
ded coordinates, a classification to different disease states can be
obtained, as most subjects belonging to the same class are grouped
together in the 3D space.

In order to assess the new embedding and visualize its advan-
tages, for each EEG device separately, we applied a support vector
machine (SVM) classifier to the first 3 eigenvectors, corresponding
to the 3 largest eigenvalues, calculated by alternating diffusion. We
visualize the resulting hyperplanes in Figure 3. Figure 3 presents 3
examples of different SVM hyperplanes separating the control group
and Alzheimer group in the new coordinate system. The first two
plots present the application of SVM with a radial basis function

and linear SVM to the embedding of the EEG recordings from the
first device and the third plot presents the application of SVM with
a quadric function to the embedding obtained from the second EEG
device. These plots depict that by applying such standard classifiers
to the constructed embedding, a good separation between the control
group and Alzheimer group can be obtained in both devices.

Leave-one-out cross validation was performed using an SVM
classifier with a radial basis function (RBF), for each EEG device.
At each iteration, all the time-segment points of one subject were
removed and used as a test-set. The class of each test subject was
then determined based on the majority class of the time-segment
points. This resulted in a correct classification of 10 out of the 11
control subjects and 13 out of the 15 Alzheimer patients. More-
over, when applying multiclass SVM, classification of the different
disease stages can also be achieved based on the constructed coordi-
nates, in a purely data-driven manner.

In order to establish the advantages of the new embedding, we
compared the classification based on the alternating diffusion coordi-
nates of multiple EEG channels, with classifications based on diffu-
sion maps of multiple EEG channels (concatenated) and a classifica-
tion based on the scattering transform output (without further anal-
ysis). In all instances, alternating diffusion outperformed all other
methods in the classification of the disease states and control group,
as presented in Table 3.

5. CONCLUSION

Alternating diffusion is a data-driven method for extracting the
common source of variability from multiple sensor measurements.
We demonstrated the ability of alternating diffusion to extract the
common variable from EEG recordings of Alzheimer patients and
healthy subjects, affected by measurement noise, nuisance move-
ment and non-linearities due to the cranium. We show that alternat-
ing diffusion provides a new coordinate system in which the subjects
are divided into groups of healthy subjects and Alzheimer patients
without prior knowledge on the disease.

In future work, we plan to extend this study and include more
subjects in order to validate our results on a greater scale. In addi-
tion, we plan to devise a new framework which considers neuronal
networks by using a larger number of EEG electrodes.
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