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ABSTRACT

Independent vector analysis (IVA) is an approach for joint blind
source separation of several data sets that learns simultaneous un-
mixing transforms for each set. It assumes corresponding sources
from different data sets to be statistically dependent. One of the
main advantages is IVA’s ability to retain subject-specific differences
while simplifying comparison across subjects as the resulting com-
ponents have the same order. The latter is an instrumental prop-
erty for enabling collaboration between remote sites without sharing
their data, which may be required because of ethical, privacy or effi-
ciency concerns. This paper proposes a new decentralized algorithm
for IVA that exploits the structure of the objective function. A cen-
tralized aggregator coordinates IVA algorithms at multiple sites us-
ing message passing, parallelizing the computation and limiting the
amount of communication. Thus, the algorithm enables a plausibly
private collaboration across multiple sites. Besides enabling analy-
sis of decentralized data, our approach improves the running time of
IVA when used locally.

Index Terms— IVA, distributed signal processing, blind source
separation, decentralized data

1. INTRODUCTION

Brain imaging provides a wealth of information about the function
and structure of the brain, offering unique views into the complex-
ities of this highly interconnected organ. In order to parse this
information into useful bits, numerous approaches have been de-
veloped to decompose brain images. Methods such as principal
component analysis (PCA) [1] and independent component analysis
(ICA) [2, 3, 4] have found much success in applications ranging
from functional [5, 6, 7] and structural [8] magnetic resonance
imaging (fMRI and sMRI, respectively) to electro- [9, 10, 11] and
magneto-encephalography [12, 13] (EEG and MEG, respectively).

PCA is a second-order statistical method, and as a result, excels
when the data can be expressed with just the mean and covariance.
It fails, however, when the data has higher order relations. ICA, on
the other hand, is a higher-order statistical method and, as such, can
solve problems which PCA cannot. Furthermore, challenges arise
when we consider the utility of either of these methods for group
analyses. Quite commonly, the data from each subject is organized
into separate datasets but methods such as PCA and ICA are not
designed to account for multiple datasets.

One approach to address this challenge is to apply ICA sepa-
rately to each subject, which is known to return independent sources
in arbitrary order and require post-processing matching, a daunt-
ing and intractable task for large number of subjects. Modifications
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of PCA and ICA have been proposed to account for multiple sub-
jects, notably group PCA [14] and group ICA (GICA) [6]. Both
methods rely on temporal concatenation of the datasets and make a
fairly strong assumption that the underlying source maps are identi-
cal across subjects. Clearly, it is far more desirable (and expected)
that the source maps contain subject-specific features. Such features
could help determine personalized treatment options, guide thera-
peutic decision making, and determine patient outcomes in pop-
ulations with disabling mental illnesses. With that in mind, two
approaches have emerged: group information-guided ICA (GIG-
ICA) [15], which employs subject-specific ICA based on the initial
results from GICA and, more recently, independent vector analy-
sis [16, 17]. IVA’s strength is in its inherent structure, which allows
corresponding sources from different subjects to be similar (i.e., de-
pendent) rather than identical. IVA gives subject-specific informa-
tion while enabling identification of dependent sources straightfor-
wardly. This allows for subject maps to contain unique information
while still being linked across different subjects.

Despite strong trends in the neuroimaging community towards
data-sharing, privacy and ethical concerns preclude many datasets
from being shared. Often these are the valuable data that either come
from rare disorders or from historical data collected without a con-
sent that allows wide sharing. This situation calls for algorithms
which can process data stored at remote sites without requiring raw
data transmission and limiting the information. IVA’s property of
ordering the components for all datasets could help research under
aforementioned circumstances of unshareable data: metanalysis of
the component properties becomes possible even without sharing the
data. However, the algorithm is centralized. Therefore, it would be
very useful to find a method to distribute the IVA algorithm such that
it could operate on decentralized data.

In this work, we introduce the decentralized IVA (dIVA) algo-
rithm to accomplish this task. dIVA allows numerous institutions
to not only collaborate on the same IVA problem but also spread
the computational load any single institution must carry out in order
to preform such high dimensional analysis, improving its execution
time. dIVA enables the previously not available use case of analyz-
ing data without the need of pulling it to a central location. Further-
more, it improves upon the speed of local IVA when used locally
instead. We introduce the traditional IVA algorithm in section 2. We
then describe our dIVA algorithm in section 3. Finally, we present
performance results in section 4, and provide concluding remarks
and future directions in section 5.

Notation: Matrices and vectors will be given in boldface, with
dimensions specified to clarify. Also, [N ] = {1, 2, . . . , N}, ◦ is the
Hadamard product, C◦−1 is element-wise inverse, and ‖·‖F is the
Frobenius norm.
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2. INDEPENDENT VECTOR ANALYSIS

Model. We first describe Independent Vector Analysis (IVA) operat-
ing on a single collection of data sets. IVA is a well-studied method
for joint (simultaneous) blind source separation (BSS) of multiple
data sets [18]. We assume the site has K data sets, one per subject,
each organized in a matrix xk ∈ RN×R representingR observations
from N sensors. These can be compactly represented as a data ten-
sor X ∈ RN×R×K . The signal model for each data set observation
is xk = Aksk, where Ak ∈ RN×N is a mixing matrix for the k-th
data set, and sk are theN underlying source signals that were mixed
by Ak to form the observations.

As in ICA, IVA models theN sources sk = [sk,1 sk,2 · · · sk,N ]>

as independent random variables. To perform the separation
of a single data set, the algorithm tries to minimize a multi-
way information functional (I) among the latent source groups
{sn ∈ RK×R : n ∈ [N ]}:

I =

∫
p(s) log

(
p(s)∏N

n=1 p(s
n)

)
ds, (1)

where sn = [s1,n s2,n · · · sK,n]
> is the n-th set (or group) of cor-

responding sources across the data sets, s is the entire collection of
allN sources from allK data sets, and p(·) is the probability density
function (pdf). As with ICA, the overall objective is to estimate un-
mixing matrices {Wk = A−1

k : k ∈ [K]} that recover the sources
sk = Wkxk: in IVA however, p(sn) can account for dependencies
between the n-th sources across data sets. We denote the collec-
tion of unmixing matrices by the unmixing tensor W ∈ RN×N×K .
Then,

I(W) =

N∑
n=1

h(sn)− h(X)−
K∑

k=1

log |detWk|, (2)

where h(·) denotes the differential entropy of a random variable. In
the minimization of I with respect to W, h(X) acts as a constant
term, so we arrive at a modified objective,

Ĩ(W) =

N∑
n=1

h(sn)−
K∑

k=1

log |detWk|. (3)

This highlights that the goal in IVA is to separate each of the K
data sets in a way such that the n-th sources across data sets are
dependent. Thus, IVA forms N K-dimensional source groups.
Algorithm. Algorithms for solving the IVA unmixing problem make
assumptions about the dependence structure of the underlying source
groups sn. For example, IVA-Laplace (IVA-L) [16, 19] and IVA-
Gaussian (IVA-G) [20] make multivariate Laplace and Gaussian as-
sumptions on the source groups, respectively. In this paper we de-
velop algorithms for IVA-L on decentralized data; the traditional
IVA-L algorithm is given in Algorithm 1.

The IVA-L algorithm iteratively refines an estimate of the under-
lying sources in a state variable Y ∈ RN×R×K , which collects the
sources Yk ∈ RN×R for each data set k. The algorithm assumes a
Laplacian prior on the source groups, such that h(snr ) ≈ ‖yn

r ‖, and
independent observations across r ∈ [R]. This yields a proxy for the
information functional:

cost(W) =
1

R

R∑
r=1

N∑
n=1

‖yn
r ‖ −

K∑
k=1

log |detWk|. (4)

For a given Y, it computes the norms ‖yn
r ‖ across the K data

sets for each source and observation, and updates the objective

estimate. For convenience, we define the matrix C ∈ RN×R by

C =
√∑K

k=1 Yk ◦Yk, containing the norms {‖yn
r ‖}, and C◦−1,

the element-wise inverse of C, containing {1/‖yn
r ‖}. Then the cost

is

cost(W) =
1

R

R∑
r=1

N∑
n=1

Cn,r −
K∑

k=1

log |detWk|. (5)

Next, we take a relative gradient step (∇W) with a modified
step size α. Finally, the unmixing matrix W is updated, and the
process continues iteratively until either the maximum number of
iterations is reached or the change in W is sufficiently small.

Algorithm 1 Independent Vector Analysis - Laplace IVA-L

Require: data X ∈ RN×R×K , tolerance level t = 10−6, maximum
iterations J , Armijo condition constant c = 10−10, α = 1

1: W ∈ RN×N×K , . e.g., Wk = I
2: ‖∇Wk‖F = 1 for k ∈ [K], ‖∇Wprev‖2F = ‖∇W‖2F
3: cost(0) =∞, j = 1
4: while j < J , maxk‖α∇Wk‖F > t do
5: Yk = Wkxk for k ∈ [K] . Source estimates

6: C =
√∑K

k=1 Yk ◦Yk and cost(j) using (5).
7: while cost(j) > cost(j − 1)− αc‖∇W‖2F do
8: α = 3

4
α . Initiate backtracking

9: W = Wprev + α∇W
10: Yk = Wkxk for k ∈ [K]

11: C =
√∑K

k=1 Yk ◦Yk and cost(j) using (5).
12: end while
13: for all datasets k = 1 : K do
14: φ = C◦−1 ◦Yk

15: ∇Wk = Wk − φYT
k Wk . Relative gradient

16: end for
17: if j > 1 then
18: α = α

‖∇Wprev‖2F
‖∇W‖2F

. Update step size
19: end if
20: Wprev = W, ‖∇Wprev‖2F = ‖∇W‖2F
21: W = Wprev + α∇W
22: j = j + 1
23: end while

3. DECENTRALIZED IVA-L

Our main contribution in this paper is designing an approach for
IVA that can operate on decentralized data. In this setting we have
P sites, each of which has its own data tensor Xp ∈ RN×R×Kp

for p ∈ [P ]. Note that each site p may have a different number
of data sets Kp. As before, the goal is to perform a separation
into sources at each site and to find unmixing matrices {Wk,p ∈
RN×N : k ∈ [Kp], p ∈ [P ]} in order to perform the separation
sk,p = Wk,pxk,p. The key challenge in decentralized IVA is that
the dependence between the sources is now across the sites as well,
i.e. the K =

∑P
p=1Kp data sets collectively.

We take a computational model in which a master node, or cen-
tralized aggregator, wishes to perform IVA-L on allK data sets. Due
to privacy and ethical constraints, the sites cannot transmit their data
sets directly to the aggregator, but instead can only send data deriva-
tives. For example, element-wise squaring is a non-linear operation
and, thus, the original data is unrecoverable after that. We therefore
want to identify computations at the local sites and aggregator that
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can effectively find the unmixing matrices minimizing (5). We can
rewrite the cost in terms of sums over the sites:

cost(W) =
1

R

R∑
r=1

N∑
n=1

√√√√ P∑
p=1

‖yn
r,p‖2 −

P∑
p=1

Kp∑
k=1

log|detWk,p|.

(6)
The aggregator can compute the cost using the squared norms
‖yn

r,p‖2 and dp =
∑Kp

k=1 log|detWk,p|, which are sums over the
Kp data sets at each site.

The procedure at the master node is given in Algorithm 6. Af-
ter initializing, the aggregator asks the local sites to compute their
summaries using LocCost (Algorithm 2) and recomputes C and the
cost using (6). To run, the master node needs to know C, the cost,
and both the maximum and sum of gradient norms, {‖∇Wk,p‖2F :
k ∈ [Kp]}, from each site, which are computed using LocGrad (Al-
gorithm 3). As in IVA-L (Algorithm 1), the aggregator backtracks
if the cost did not meet the Armijo condition for sufficient decrease.
Once it finds an appropriate step size, it sends the matrix of inverse
norms to the sites, which take a relative gradient step on their local
data using LocUpdate (Algorithm 5) after α is updated.

Algorithm 2 LocCost
Input: site index p

Require: local data Xp ∈ RN×R×Kp , Wp ∈ RN×N×Kp

Yk,p = Wk,pXk,p for k ∈ [Kp] . Source estimates
Cp =

∑Kp

k=1 Yk,p ◦Yk,p

dp =
∑Kp

k=1 log|detWk,p|
Return Cp, dp

Algorithm 3 LocGrad

Input: site index p, C◦−1 ∈ RN×R

Require: Yp ∈ RN×R×Kp , Wp ∈ RN×N×Kp

for all k ∈ [Kp] do
φ = C◦−1Yk,p

∇Wk,p = Wk,p − φY>k,pWk,p . Relative gradient
end for
Return

∑Kp

k=1‖∇Wk,p‖F, maxk‖∇Wk,p‖F

Algorithm 4 LocApply
Input: site index p, step size α

Require: Wp,∇Wp,Wprev,p ∈ RN×N×Kp

Wp = Wprev,p + α∇Wp

Algorithm 5 LocUpdate
Input: site index p, step size α

Require: Wp,∇Wp,Wprev,p ∈ RN×N×Kp

Wprev,p = Wp

Wp = Wprev,p + α∇Wp

Dimensionality reduction. Typically, the data for a single subject is
xk ∈ RT×R, where T > N . Before IVA-L can be applied, dimen-
sionality reduction via group PCA is often required. This can be very
computationally expensive on large data sets. Thus, in this work we
explore the use of random projections to attain dimensionality re-
duction. Specifically, let U be a T × N random matrix sampled

Algorithm 6 dIVAAgg

Require: [P ], each site containing Xp ∈ RN×R×Kp and Wp ∈
RN×N×Kp , tolerance level t = 10−6, maximum iterations J ,
Armijo condition constant c = 10−10, α = 1

1: Locally initialize {Wp : p ∈ [P ]} . e.g., Wp,k = I
2: ‖∇Wp‖F = 1, ‖∇Wp‖F,max = 1 for p ∈ [P ]
3: cost(0) =∞, ‖∇Wprev‖2F = ‖∇W‖2F, j = 1
4: while j < J , maxp α‖∇Wp‖F,max > t do
5: (Cp, dp) = LocCost(p) for p ∈ [P ].

6: C =
√∑P

p=1 Cp

7: cost(j) = 1
R

∑
n,r Cn,r −

∑P
p=1 dp

8: while cost(j) > cost(j − 1)− αc‖∇W‖2F do
9: α = 3

4
α . Initiate backtracking

10: LocApply(p, α) for p ∈ [P ]
11: (Cp, dp) = LocCost(p) for p ∈ [P ].

12: C =
√∑P

p=1 Cp

13: cost(j) = 1
R

∑
n,r Cn,r −

∑P
p=1 dp

14: end while
15: (‖∇Wp‖F, ‖∇Wp‖F,max) = LocGrad(p,C◦−1) for p ∈

[P ]

16: ‖∇W‖2F =
∑P

p=1‖∇Wp‖2F
17: if j > 1 then
18: α = α

‖∇Wprev‖2F
‖∇W‖2F

. Update step size
19: end if
20: ‖∇Wprev‖2F = ‖∇W‖2F
21: LocUpdate(p, α) for p ∈ [P ]
22: j = j + 1
23: end while

from normal distribution. The objective is to obtain a matrix whose
rows are orthonormal and whose entries are sampled from Normal
distribution. To this end, let U = QR be the QR-Decomposition
of U, where Q is a T ×N matrix with orthonormal columns and R
is an upper traingular N × N matrix. Then Q = UR−1 is a ma-
trix with orthonormal columns whose entries are sampled from the
Normal distribution, effectively sampling uniformly on an (N − 1)-
dimensional hypersphere [21]. Thus, QT is a matrix whose rows are
orthonormal, as desired. The same projection Q is used across all
subjects.

4. RESULTS

To test the efficiency of the dIVA algorithm, we run three experi-
ments on 1024 synthetic fMRI data sets (each representing a sub-
ject), and assess their performance via the joint Moreau-Amari in-
tersymbol interference (jISI) index [20], which is a function of the
square matrices Hk = ŴkAk, where Ŵk = WkQ

>.
Synthetic sources. 20 synthetic source maps were generated for
each subject, sk. These maps were generated with the SimTB fMRI
Simulation Toolbox [22]. Each source map was set to be a 2D im-
age of dimensions 206 × 206, each with 32968 pixels represent-
ing in-brain voxels. Each source map was identical in shape across
subjects. However, subject-specific variability was introduced by
random scaling, translating and rotating the spatial features on each
subject. Thus, corresponding sources should be dependent (rather
than identical) across subjects.
Mixing process. Each of the 20 columns of the mixing matrices
Ak were selected as the timecourses from the work in [23]. They
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C

B

A

Fig. 1. For 2 sites we increase the number of subjects as each site
keeping it equal for both. The running time increases with more data
(A) as jISI decreases (C), with iteration number staying put.

were simulated using a generalized autoregressive (AR) conditional
heteroscedastic (GARCH) model [24, 25], which has shown use
in causal source separation [26] and time-series analyses of neuro-
science data [26, 27], especially resting-state fMRI [28, 29]. This
was achieved by generating random AR processes (no moving aver-
age terms) such that their AR series converged. The AR order was
randomly selected between 1 and 10, as well as random coefficients
{α[l]}, such that {α[0]} ∈ [0.55, 0.8] and {α[l]} ∈ [−0.35, 0.35]
for l > 0. For the error terms δt = σtεt, an ARMA model driven
by εt from a generalized Normal distribution with shape parame-
ter 100 (so it was approximately uniform on [−1, 1]) and σ2

t =
0.1 + 0.1y[t − 1]2 + 0.75σ[t − 1]2 was used. Each of the time
courses had T = 250 time points, obtained after a burn-in period of
20000 samples, checking that all pair-wise correlations between the
20 time courses was below 0.35. Finally, the mixing process from
each subject was applied to the collection of source maps from the
same subject as xk = Aksk.
Experiments. For the first experiment, the total number of sites
remains fixed at P = 2, and we test how dIVA preforms as we
increase the number of subjects available at each site (Fig. 1). For the
second experiment, we test how dIVA performs when the number of
subjects available at each site remains fixed atKp = 32 for p ∈ [P ],
while the number of sites involved in the analysis increases (Fig. 2).
The tests thus provide a measure of how dIVA changes as the number
of subjects, the number of sites, and the number of subjects per site
varies.

To compare the speed of locally run dIVA to IVA, we preform
a time test. Both dIVA and IVA are run for 100 iterations using the
same subjects and initial unmixing matrix. After the 100 iterations,
we divide the wall clock time it took IVA to run by the time dIVA
took to run to get the speed up factor of dIVA over IVA. Repeat-
ing this process for 10 different initial starting points and increasing
number of subjects gives a rough idea of how running times of lo-
cally run dIVA compare to IVA, as seen in Fig. 3.

The experiments show that dIVA does indeed work on decentral-
ized datasets. Its accuracy does not deteriorate with the additional
number of subjects and may even slightly improve (Fig. 1(C)). Al-
though the running time steadily grows with more data the situation
may change when the sites are really decentralized and perform the
computation truly in parallel. We leave discussion of many factors
(such as network latency) that can affect the speed for future. The

A

B

C

Fig. 2. Fixing the number of subjects per site to 32, we increase
the number of sites. jISI and the number of iterations stay virtually
unchanged.

Fig. 3. Comparison of the running times of IVA and dIVA as a func-
tion of the total number of subjects. The higher the factor the faster
dIVA is compared to IVA.

main goal of dIVA is not to speed up the computation by putting
data on remote resources but rather bring the computation to other-
wise inaccessible data. However, as Fig. 3 shows, dIVA when used
locally may be able to improve efficiency of the current practice of
using IVA up to a factor of 4, which for long runs with large datasets
may amount to a couple of days versus a week of computation.

5. CONCLUSION

Independent vector analysis (IVA) is an appealing way to leverage
multiple data sets for performing blind source separation. Unfortu-
nately, in contexts such as collaborative research consortia, the data
sets may be held by different parties who wish to collaborate in an
IVA analysis but are unable to share their data, precluding central-
ized processing. In addition, the running time of IVA is quadratic
in the number of data sets: this prevents truly large-scale analysis on
high-dimensional data such as MRI. However, as we show in this pa-
per, the objective function optimized by IVA can be split across the
sites, allowing the bulk of the computation to be parallelized with the
aid of an aggregator that collects summaries from individual sites.
We proposed a new algorithm, dIVA, that operates on decentralized
data and indeed provides high estimation accuracy. Our experimen-
tal results show that the running time of the method is significantly
improved over a centralized approach. Future work includes addi-
tion of differential privacy to further protect the data at local sites.
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Zarzoso, Eric Moreau, Rémi Gribonval, and Emmanuel Vin-
cent, Eds., vol. 6365 of Lecture Notes in Computer Science,
pp. 354–361. Springer, St. Malo, France, 2010.

[21] Nir Ailon and Bernard Chazelle, “The fast johnsonlinden-
strauss transform and approximate nearest neighbors,” SIAM J
Comput, vol. 39, no. 1, pp. 302–322, 2009.

[22] Erik B. Erhardt, Elena A. Allen, Yonghua Wei, Tom Eichele,
and Vince D. Calhoun, “Simtb, a simulation toolbox for fmri
data under a model of spatiotemporal separability,” NeuroIm-
age, vol. 59, no. 4, pp. 4160–4167, 2012.

[23] B.T. Baker, R.F. Silva, V.D. Calhoun, A.D. Sarwate, and S.M.
Plis, “Large scale collaboration with autonomy: Decentralized
data ICA,” in IEEE MLSP 2015, Boston, MA, 2015, pp. 1–6.

[24] Robert F. Engle, “Autoregressive conditional heteroscedastic-
ity with estimates of the variance of united kingdom inflation,”
Econometrica, vol. 50, no. 4, pp. 987–1007, 1982.

[25] Tim Bollerslev, “Generalized autoregressive conditional het-
eroskedasticity,” J Econom, vol. 31, pp. 307–327, 1986.

[26] Kun Zhang and Aapo Hyvarinen, “Source separation and
higher-order causal analysis of MEG and EEG,” in Proc UAI
2010, Catalina Island, California, 2010, AUAI Press.

[27] Tohru Ozaki, Time Series Modeling of Neuroscience Data,
CRC Press, 2012.

[28] Qiang Luo, Tian Ge, Fabian Grabenhorst, Jianfeng Feng, and
Edmund T. Rolls, “Attention-dependent modulation of cor-
tical taste circuits revealed by Granger causality with signal-
dependent noise,” PLoS Comput Biol, vol. 9, no. 10, pp.
e1003265, 10 2013.

[29] Martin A. Lindquist, Yuting Xu, Mary Beth Nebel, and
Brain S. Caffo, “Evaluating dynamic bivariate correlations in
resting-state fmri: A comparison study and a new approach,”
NeuroImage, vol. 101, pp. 531–546, 2014.

830


