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ABSTRACT

Biomedical images are usually corrupted by strong noise and
intensity inhomogeneity simultaneously. Existing region-
based active contour models (RACMs) easily fail when seg-
menting such images. In the frequency domain, we propose a
generalized RACM that presents a new way to understand the
essence of classical RACMs whose segmentation results are
determined by a frequency filter to extract the proposed fre-
quency boundary energy. Then, we introduce the difference
of Gaussians as the optimal filter to exclude strong noise and
intensity inhomogeneity effectively. We show superior per-
formance of the model by comparing with six state-of-the-art
methods on challenge biomedical images and segmenting an
optical coherence tomography image sequence.

Index Terms— biomedical image segmentation, active
contour model, frequency boundary energy

1. INTRODUCTION

Active contour models (ACMs) [1, 2] can obtain sub-pixel
precision segmentation and smooth contours, and are widely
employed in medical image segmentation. ACMs are mainly
classified into two types: edge-based [2–7] and region-based
ACMs (RACMs) [1,8–21] . RACMs can handle various noise
and weak edges usually found in medical images.

Let an image I be Ω → < with Ω being the image do-
main <2 and contain an object whose boundary is denoted
as C. A contour Ct is first initialized on the image and par-
titions I into sub-regions outside and inside the Ct (Ω1 and
Ω2). Then, RACMs restrain Ct to C via minimizing an en-
ergy function based on region features and get segmentation
with sub-regions being object and background [1, 9, 19]. The
Mumford-Shah model [8] laid the foundation for RACMs.
However, it is very difficult to converge to the optimal solu-
tion for the non-convexity of its energy function. Then, Chan-
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Fig. 1. Segmenting optical coherence tomography (OCT) image
with CV [9, 10], LBF [12, 13], legendre level set (L2S) [22] and our
method. The dashed line in (a) is the initial contour for all methods.

Vese (CV) model [9] was developed and defined as

ECV(Ct, ai) =

2∑
i=1

∫
Ωi

|I(x)− ai|2dx, (1)

where x ∈ Ω is the coordinate vector. ai is the average
intensity of Ωi and can be regarded as global region informa-
tion which helps CV to segment homogeneous images effec-
tively. However, it fails to handle intensity inhomogeneity,
e.g. Fig. 1 (b). To overcome this problem, local binary fit-
ting (LBF) model [12, 13] is proposed and defined as

ELBF(Ct, fi(x)) =

∫
Ω

εFit
x (Ct, f1(x), f2(x))dx, (2)

where εFit
x encourages local smooth via Gaussian function,

i.e. K(·), with y being the neighbor of x and is defined as

εFit
x (Ct, fi(x)) =

2∑
i=1

∫
Ωi

K(x− y)|I(y)− fi(x)|2dy, (3)

where fi(x) is the gaussian weight summation of the neigh-
borhood of x. Similarly, another local region based ACM,
i.e. local image fitting (LIF) model [11] is defined as

ELIF(Ct, fi(x)) =

2∑
i=1

∫
Ωi

|I(x)− fi(x)|2dx. (4)

With local region information, LBF and LIF can segment im-
ages with intensity inhomogeneity. However, they are sen-
sitive to strong noise, e.g. Fig. 1 (c). Therefore, classical
RACMs fail to segment images with strong noise and intensi-
ty inhomogeneity simultaneously.

However, many biomedical images are corrupted by
strong noise and intensity inhomogeneity simultaneously
because of the limitations in imaging technology. For ex-
ample, the optical coherence tomography (OCT) heart tube
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images shown in Fig. 1 are corrupted by strong speckle noise
and bias. Global or local RACMs fail to obtain smooth seg-
mentation. Recently, many improved RACMs were proposed
via effectively utilizing image information [14, 17, 19, 22]
or improving the method of minimizing the energy func-
tion [10, 18]. For example, [22] proposed legendre level
set (L2S), which represents region information as a set of
Legendre basis functions and is able to handle noise and in-
tensity inhomogeneity. These models achieve better results in
some cases, but they still have limitations when segmenting
complex images, e.g. Fig. 1 (b)-(d).

In this paper, we propose a generalized RACM by defin-
ing frequency boundary energy (FBE) in the frequency do-
main. Image segmentation is defined as finding a contour that
minimizes the FBE outside and inside the contour. Thus, the
segmentation result is decided by a frequency filter that pro-
duces FBE. Then, we introduce two frequency filters being
demonstrated to be classical RACMs, which indicates that F-
BE is a generalized RACM. Finally, we propose to use differ-
ence of Gaussians as a better filter to exclude strong noise and
intensity inhomogeneity effectively. Extensive experiments
demonstrate the proposed model achieves better results than
six state-of-the-art methods.

2. THE METHOD

2.1. Frequency boundary energy

C is the boundary between the object and the background.
The goal of ACM is to restrain Ct to C and gets segmen-
tation. In the frequency domain, the fourier transform of
an image I is S = =(I,Ω), with its power spectrum being
P(u) = |S(u)|2, where u is the coordinate vector in fre-
quency domain. Here, we focus on the energy of the object
boundary C in sub-regions (Ω1 and Ω2) divided by Ct and
define Pi as the power spectra of C in Ωi. Thus, the energy
of C contained in Ω/Ct is presented as

EFBE(Ct) =

2∑
i=1

∫
=(I,Ωi)

Pi(u)du. (5)

Clearly, when Eq. (5) is minimized, i.e. the energy of C
in both subregions vanishes, C is not included in any sub-
regions, i.e. Ct equals to C with segmentation being obtained.
Fig. 2 shows an example in which Ct gradually fits to C with
the reducing of EFBE. We denote Eq. (5) as frequency bound-
ary energy (FBE). The key of using FBE is to define Pi. As
Pi represents the energy of C, we can use a frequency fil-
ter (F(u)) to extract the C in the frequency domain for sub-
region Ωi, i.e. Si(u)F(u) with Si(u) being the fourier trans-
form of sub-region Ωi. Thus, FBE can be rewritten as

EFBE(Ct) =

2∑
i=1

∫
=(I,Ωi)

|Si(u)F(u)|2du. (6)

However, we cannot calculate the fourier transform of Ωi
directly due to their arbitrary shapes, which limits the appli-
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Fig. 2. An example of minimizing FBE. As EFBE reducing, the en-
ergy of C in subregions gradually vanishes. Finally, Ct is restricted
to C with segmentation result obtained.

cation of FBE. Fortunately, with the level set φ representation
of Ct and the Heaviside function H(·) detailed in [9], we can
represent each sub-region Ωi as Mi(φ)I with M1(φ) = H(φ)
and M2(φ) = 1−H(φ). Thus, the fourier transform of Ωi can
be approximated as Ŝi(u) = =(Mi(φ)I,Ω). Since Mi(φ) al-
so introduces energy into Ŝi(u), we should regularize it in
spatial domain and rewrite Eq. (6) as

EFBE(φ) =

2∑
i=1

∫
=(Mi(φ))I,Ω)

| =
−1(Ŝi(u)F(u))

=−1(=(Mi(φ))F(u))
|2du.

(7)
Theoretically, as long as F(u) is able to accurately extract

boundary information, the segmentation result is optimized
when the FBE is minimized. Thus, selection of F(u) is key
to achieving effective segmentation.

2.2. F(u) designing

We first introduce the two F(u) and demonstrate their relation
to classical models, which shows that FBE model is a gener-
alized RACM. Then, we propose the difference of Gaussians
as a better filter to segment images with both strong noise and
intensity inhomogeneity.

2.2.1. Ideal high-pass filter

We set F(u) as an ideal high-pass filter,

F(u) = 1− FIlp(u),FIlp(u) =

{
0, u 6= (0, 0)
1, u = (0, 0)

. (8)

Due to energy conservation of fourier transform, We can
rewrite the Eq.(6) in spatial domain,

EFBE(Ct) =

2∑
i=1

∫
Ωi

|I(x)− I ∗ fIlp|2dx, (9)

where fIlp is the spatial filter of FIlp; * denotes the convolution
operation. Since convoluting the Ωi with ideal low-pass filter
equals to calculate the average value of Ωi, i.e. ai, Eq. (9) can
be rewritten as

EFBE(Ct) =

2∑
i=1

∫
Ωi

|I(x)− ai|2dx. (10)
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Fig. 3. Three F(u) corresponding to CV, LIF and FBE-DoG. The
color squares on horizonal axis represent the possible information
distribution of a image.

Obviously, Eq. (10) is consistent with Eq. (1). Therefore,
CV is a specific form of FBE model when F(u) is set as an
ideal high-pass filter. Furthermore, as shown in Fig. 3 (a),
with F(u) being ideal high-pass filter, the FBE contains both
boundary and other interference, e.g. strong noise and inten-
sity inhomogeneity, which leads the CV model is easily af-
fected by noise and intensity inhomogeneity.

2.2.2. Gaussian high-pass filter

We then set F(u) being the Gaussian high-pass filter,

F(u) = 1− FGlp(u),FGlp(u) = exp(−D
2(u)

2D2
0

), (11)

where D(u) represents the distance from point u to the zero
frequency. D0 is the cutoff frequency. fGlp(x) is the spatial
filter of FGlp(u). Thus, Eq. (6) can be rewritten as

EFBE(Ct) =

2∑
i=1

∫
Ωi

|I(x)− fi(x)|2dx, (12)

where fi(x) = (I,Ωi) ∗ fGlp. Therefore, Eq. (12) is consis-
tent with Eq. (4), and LIF is a specific form of FBE model,
with F(u) being the Gaussian high-pass filter. As shown in
Fig. 3 (b), the Gaussian high-pass filter helps to limit the in-
tensity inhomogeneity which is a low frequency component.
However, the noise is still included in the EFBE which make
LIF fail to handle images with strong noise.

Furthermore, we rewrite Eq. (3) as a discrete form:

εFit
x =

2∑
i=1

M∑
j=1

wj |I(yj)− fi(x)|2, (13)

where wj is the coefficient of the Gaussian kernel with 0 <
wj < 1. M is the size of the Gaussian kernel. Therefore,
Eq. (2) can be rewritten as Eq. (14).

ELBF =

M∑
j=1

wj

2∑
i=1

∫
Ωi

|I(yj)− fi(x)|2dx

= w1ELIF +

M∑
j=2

wjÊ
LIF

. (14)

We assume I(yi) ≈ I(x)(i 6= 1); the degree of approxima-
tion is determined by wj . Thus, ELBF equals a weighted com-
bination of ELIF and its approximations. This explains why
LIFM can obtain results similar to those of LBF [11].

2.2.3. DoG filter

We have shown that the classical RACMs are the special cases
of our FBE model by setting ideal or gaussian high-pass filter
as the F(u) and cannot handle strong noise and intensity in-
homogeneity simultaneously. To get better segmentation, we
propose to set F(u) being a band-pass filter to limit both high
and low frequency interferences. Obviously, the DoG shown
in Fig. 3 (c) is suitable, being widely used in edge extraction,
feature point detection [23] and salient region detection [24].
Then, we set F(u) being the DoG filter, i.e.

F(u) = DoG(u) = G(u, σ1)−G(u, σ2), (15)

G(u, σi) =
1

2πσ2
i

exp(−uTu

2σ2
i

). (16)

Substituting Eq. (15) into Eq. (6), the FBE-DoG is obtained.
The bandwidth and position of the DoG filter are determined
by the values and ratio of σ1 and σ2. Therefore, by selecting
the correct σi for different images, FBE-DoG can obtain the
better segmentation result.

2.3. Optimization

We combine Eq. (7) with the length and level set regulariza-
tion term defined in [5, 11]. With the gradient descent algo-
rithm, the minimization of Eq. (7) w.r.t φ is defined as

∂φ

∂t
= λ[f2

b2(x)− f2
b1(x)]δ(φ)

+ µ(∇2φ− div(
∇φ
|∇φ|

)) + νδ(φ)div(
∇φ
|∇φ|

),
(17)

Where λ, µ and ν are the weighted factors for three terms;
δ(·) is the Dirac delta function; fbi(x) is defined as

fbi(x) =
=−1(Ŝi(u)F(u))

=−1(=(Mi(φ))F(u))
. (18)

3. EXPERIMENTS

3.1. Setup

We use the DRIVE dataset [25] that contains 40 noiseless reti-
nal images to evaluate the performance of our method. These
images are seriously corrupted by intensity inhomogeneity
as shown in the first row of Fig. 4. Furthermore, we ex-
tend a noise version by add serious additive Gaussian noise to
DRIVE dataset to evaluate the ability of handling strong noise
and intensity inhomogeneity simultaneously. Besides, we al-
so use our method to segment optical coherence heart image
sequences to show its practicability. We use the CREASEG
platform [26] to compare our method with six RACMs, i.e.
b-spline level-set (BSLS) [10], selective local or global seg-
mentation [18], local region ACM (LRACM) [20], local gaus-
sian distribution fitting energy (LGDF) [17], local binary fit-
ting (LBF) [13] and recent method level set with legendre
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Fig. 4. Comparing with six ACM methods. The first image is one of the results in DRIVE Dataset; the second images are corrupted by
strong multiplicative noise; the third image is the original OCT image corrupted by both speckle noise and intensity inhomogeneity.

Table 1. Average DICE and PSNR of Segmenting the DRIVE
Dataset and Its Noisy Version.

Method noiseless images noisy images
DICE PSNR DICE PSNR

BSLS [10] 0.24 3.39 0.27 4.13
SBGFR [18] 0.38 4.05 0.38 4.24
LRACM [20] 0.07 8.03 0.08 8.06
LGDF [17] 0.71 10.78 0.51 8.87
LBF [12] 0.74 11.42 0.29 8.13
L2S [22] 0.63 29.90 0.27 7.14
FBE-DoG 0.78 11.99 0.62 9.42

polynomials (L2S) [22]. The DICE and PSNR used in [25]
work as the metrics to evaluate the segmentation accuracy.

Three parameters of our method in Eq. (17) are fixed for
all experiments and set as: λ = 1, µ = 0.1 and ν = 0.009.
The σ1 and σ2 used in Eq. (15)are fixed for different datasets.
Specifically, for DRIVE dataset, we set σ1 = 0.4 and σ2 =
0.01; for OCT images, we set σ1 = 0.5 and σ2 = 0.02.

3.2. Comparing with state-of-the-art methods

Comparison results on both noiseless and noise version of
DRIVEN dataset are summarized in Table 1. Our method
achieves best performance comparing with six baselines on
both DICE and PSNR. On noiseless version, FBE-DoG get-
s 0.78 and 11.99 on DICE and PSNR, respectively, followed
by LBF and LGDF. On noise version, the values of both met-
rics of our method are reduced to 0.62 and 9.42, respective-
ly. However, the performance of LBF decreases significantly
on the noise version, which indicates the LBF cannot handle
strong noise properly, since it does not limit the high frequen-
cy introduced by noise as presented in subsection 2.2.2. We
also show the segmentation results of seven methods in Fig. 4.
Obviously, our method achieves the best segmentation accu-
racy with smooth contour for noisy DRIVEN image (the first
row), blood image (second row) corrupted by multiplicative
noise and real OCT image (third row).

Fig. 5. 3D model constructed from OCT image sequence segmen-
tation results.

3.3. Application to segment OCT image sequence

With FBE-DoG, we segment an OCT image sequence ob-
tained from an embryonic chick heart tube to reconstruct a
3D model to understand the mechanism of formation of the
avian heart. These images are corrupted by both strong noise
and intensity inhomogeneity [27]. The initial contour is se-
lected manually to segment the first image of the sequence.
Thereafter, the result of segmentation of the prior image is
used as the initial contour for the next image. A 3D model is
made based on the segmentation results, as shown in Fig. 5.
This application shows that the FBE-DoG model overcomes
the influence of noise and intensity inhomogeneity in medical
images and extracts the main information (e.g. the heart tube).

4. CONCLUSION

We have proposed a generalized region-based ACM in fre-
quency domain by defining a frequency boundary energy (F-
BE). We use DoG filter to extract the FBE, which can seg-
ment images with strong noise and intensity inhomogeneity.
Extensive experiments on retinal and OCT heart tube images
show that our method gets higher segmentation accuracy and
smoother contour than six state-of-the-art methods. We also
show that classical RACMs are special cases of FBE model
via setting different frequency filters. In the future, we will
extend the model to include more discriminative feature such
as color, texture and priors to obtain better results. We will
also attempt to learn the parameters on large dataset.
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