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ABSTRACT

Considerable practical interest exists in being able to auto-
matically determine whether a recorded magnetic resonance
image is affected by motion artifacts caused by patient move-
ments during scanning. Existing approaches usually rely on
the use of navigators or external sensors to detect and track
patient motion during image acquisition. In this work, we
present an algorithm based on convolutional neural networks
that enables fully automated detection of motion artifacts in
MR scans without special hardware requirements. The ap-
proach is data driven and uses the magnitude of MR images
in the spatial domain as input. We evaluate the performance
of our algorithm on both synthetic and real data and observe
adequate performance in terms of accuracy and generaliza-
tion to different types of data. Our proposed approach could
potentially be used in clinical practice to tag an MR image as
motion-free or motion-corrupted immediately after a scan is
finished. This process would facilitate the acquisition of high-
quality MR images that are often indispensable for accurate
medical diagnosis.

Index Terms— Motion Artifacts, MRI, Quality Assess-
ment, Convolutional Neural Networks, Deep Learning

1. INTRODUCTION

In magnetic resonance imaging (MRI), patient motion during
image acquisition degrades image quality, leading to ghosting
and blurring artifacts [1]. Even slight motion can cause arti-
facts [2]. As a result, 30% of MRI scans in clinical practice
cannot be used for diagnostic purposes [3], and solving the
problem of unwanted motion during image acquisition is an
important goal in scientific and medical MRI [4]. Although
many methods to cope with motion have been proposed, no
universally accepted solution currently exists (see [5] and [6]
for an overview of the current state of the art).

Being able to automatically detect whether movement of
a scanned subject occurred during image acquisition has con-
siderable value. Depending on the outcome (i.e. motion was
detected), another scan might be performed or the data might
be discarded if it could compromise the conclusions of a sci-
entific study. Motion artifacts can be subtle, and they are not

necessarily prominent in all slices of the acquired volume.
Consequently, the technician or the researcher cannot always
visually identify them in situ.

During the last decade significant progress has been made
in developing the means for automatic detection and estima-
tion of motion. The existing approaches rely on navigators
[7] [8], optical tracking cameras [9], analyzing the air back-
ground [10] or sequences with special motion-sensitive sam-
pling patterns [11]. State-of-the-art methods are robust and
accurate. Not only can they reveal whether motion occurred,
but they can also reliably predict the exact motion trajec-
tory. Such predictions can be used for correcting the motion
prospectively or retrospectively. However, the methods rely
on the use of special equipment or imaging sequence modi-
fications. In this work we attempt to develop an automated
method that can classify a scan into ”motion/no motion” cat-
egories based solely on the image data output by the scanner.
Importantly, we consider the intra-scan motion rather than the
inter-scan motion, which is a different problem that results in
misregistration of multiple MR volumes.

Recently, deep neural networks have been shown to be
highly efficient in tackling many computer vision challenges,
such as object detection [12] and image processing problems
such as deblurring [13]. In this work, we present an algorithm
based on convolutional neural networks (CNNs) that enables
fully automated detection of motion artifacts in MR images.
We evaluate the performance of different variations of our al-
gorithm and show that our proposed method is both reliable
and flexible, generalizing well to different types of MR im-
ages. We use a binary ”motion” or ”no motion” classification
scheme because quantitative description of motion artifacts is
ambiguous for the different types of motion, translations and
rotations and the different types of images considered in our
study.

2. EXPERIMENTAL SETUP

2.1. Technical Setup

For implementation, we used the Caffe [14] deep neural net-
work toolbox. As shown in Fig. 1 the implemented network
consists of two convolutional and two dense layers. To pre-
vent the network from overfitting, a dropout layer has been
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Fig. 1: Our proposed network architecture consists of two sequential convolutional layers interleaved with RELU and pooling
layers. The convolutional layers are followed by two fully connected layers, a dropout layer to prevent overfitting and an output
inner product layer. To measure the performance of the network, an accuracy layer was attached to the output neurons.

added [15].
All images were resized to a resolution of 256×256 pix-

els and zero-centred by mean-subtraction. To ensure balanced
training of our binary estimator, equal numbers of images
with and without motion artifacts were used. The experi-
menters labeled all images with ”motion” or ”no motion”.
We increased the amount of training data by chopping each
3D volume into 2D slices of transversal, coronal and sagittal
sections. This procedure increased the amount of available
training data by a factor of 300 for the brain scans and by a
factor of 64 for the fruit scans. By training and testing our
model on volume slices, we obtained slice-specific labels for
use when processing entire MR volumes.

The testing and training were performed on a Nvidia Tesla
K20Xm graphics card. Training a network with 6000 images
until convergence took one hour. A batch size of 50 images
was used, and the entire test set was passed through the net-
work every 500 iterations. The initial learning rate was set to
0.1 with a step size of 10,000 images. As shown in Fig. 2, we
compared the vanilla stochastic gradient descent solver with
AdaGrad [16] and AdaDelta [17] techniques. We observed
superior performance for AdaDelta, which we ultimately used
in our experiments.

2.2. Dataset Setup

To evaluate the ability of our network to generalize over dif-
ferent object morphologies and structures, we acquired a fruit
dataset, which consisted of tomatoes, kiwis, lemons, pineap-
ples, mangos and kohlrabies (see Fig. 3 for representative im-
ages). Each image of the fruit dataset was acquired with the
3D FLASH sequence and two echo times, 4 ms and 8 ms, to
test the generalization ability to different MR contrasts. The
dataset was composed of equal numbers of motion-free and
motion-corrupted images. To induce the motion the experi-
menter stood near the scanner bore during the acquisition and
used a hand-powered external actuator to displace the fruit
inside the coil while the image was being acquired. In to-
tal, 2400 fruit images were recorded. To make even more
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Fig. 2: Comparison of performance of different solvers on the
fruit dataset. Stochastic gradient descent showed the worst
performance, whereas both AdaGrad and AdaDelta achieved
similarly high accuracy, with AdaDelta performing slightly
better.

data available during training and make the algorithm agnos-
tic against possible rotational pose changes of the scanned ob-
ject, we augmented the data by rotating the acquired images
by 90, 180 and 270 degrees in a post-processing step. The
dataset was split into 90% training and 10% test data seg-
ments.

We also tested the sensitivity of the network to motion ar-
tifacts with different levels of intensity. The experiment was
performed on a synthetic motion dataset, which was gener-
ated by taking 2700 motion-free complex-valued MR images
of a human brain and using a forward model of the degra-
dation process to simulate motion artifacts; for details on the
motion model see [18]. In each experiment both translational
and rotational motion was induced. Both types of motion
were prescribed by generating uniformly distributed random
displacement vectors. The length was chosen according to the
number of phase encode steps from the range of [−S : S] pix-
els for translational motion. For rotational motion we used the
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Fig. 3: First row: Fruit images used for network training.
From left to right: pineapple, avocado, tomato, lemon and
kiwi. Second row: motion corrupted the brain scan; motion
intensity was increased from left to right.

frequency domain line segments in the range of [−S : S] · π
180

radians as length. The ”no motion” case corresponded to
S = 0. As shown in Tbl. 1, the amplitudes used were in
the range between 0.05 and 3. In Fig. 3 we show three repre-
sentative images of synthetically generated motion data.

The training and evaluation were performed in two exper-
imental phases. In the first phase, we trained the network with
a fixed amplitude and tested the performance on the validation
data generated with the same motion amplitude. In the second
phase, we trained the network on motion-corrupted examples
with a varying motion amplitude. We then tested it on data
generated with pure amplitude levels to assess how well the
network was able to generalize. In theory, training the net-
work on synthetic data offsets the problem of overfitting be-
cause it is possible to generate nearly an infinite number of
different training examples. It is important to emphasize that
the model that we used to generate the synthetic motion did
not involve approximations and was faithful to the true motion
degradation process. In our last set of experiments we trained

Trained on
amplitude S

Acc. on
val. set

Acc. on
mixed Amp.

0.05 0.568 0.648
0.1 0.702 0.592
0.15 0.610 0.722
0.2 0.713 0.843
0.25 0.923 0.907
0.3 0.972 0.948
3 0.985 0.953
mixed Ampl. 0.983 -

Table 1: Performance evaluation based on the accuracy of the
network trained and tested on the artificial motion data.

the algorithm on a dataset composed of brain images affected

by real subject motion. The dataset consisted of 6000 im-
ages and was again split into 90% training and 10% test data.
We checked the performance and flexibility of the trained net-
works by conducting a cross-evaluation on the different types
of data. For example, we trained the network on the brain im-
ages and tested it on fruit images and vice versa. By doing so
we were able to test the out-of-domain performance of a net-
work; that is, we tested the network on data featuring image
structures that it did not ”see” during training. Additionally,
we conducted an experiment with mixed training data; for ex-
ample, we added 10% of the fruit images to the brain dataset
and 10% of the brain scans to the fruit dataset.

3. RESULTS

We first examine the results obtained on the artificial mo-
tion dataset, shown in Tbl. 1, and observe that increasing the
strength of artificial motion improved the classification ac-
curacy. The network achieved a nearly perfect classification
performance at an amplitude of 0.3, which corresponds to
motion artifacts barely visible to a human observer. Increas-
ing the amplitude even further did not affect the performance,
which remained close to 100% accuracy. The performance of
the network trained on data with motion of mixed amplitudes
was similar even though this case was more challenging to
train and generalize to. Interestingly, training the network on
a single amplitude level and then testing it on mixed data also
led to highly accurate predictions, 0.948 for S = 0.3, which
suggests that the network was able to pick up and capture cer-
tain aspects of motion artifacts that are invariant to the motion
intensity. In Fig. 4 we show the learned filters extracted from
the first convolutional layer. Some of them can be identified
as edge detectors, while others exhibit a more intricate struc-
ture that is more difficult to interpret. For real motion data
we obtained a similar performance. When we trained and
tested the network either on fruit or brain images only, we got
nearly 100% accuracy (see Tbl. 2). The network trained on
brain scans performed slightly better than chance level on the
fruit dataset, 0.56 accuracy. Even when 10% of the fruit scans
were added to the training, the performance did not increase
substantially. However, the network trained on fruit images
initially performed with 0.60 accuracy on brain images. The
performance was even better if brain scans were added, yield-
ing an accuracy of 0.86.

The performance of the network of fruits mixed with
brains suggests that the network is able, in a limited way, to
detect motion features invariant to object shape. The poor
performance of the network trained on brain images, even
with the addition of 10% fruits, evaluated on fruit images
may be explained by the heterogeneity of the fruit dataset (cf
Sec. 2.2).

Further examinations of the trained network on the artifi-
cial network is presented in Tbl. 3. The results indicate that
the network trained on motion with mixed amplitudes had an
accuracy of 0.90 and 0.56, respectively, when tested on the
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Fig. 4: Visualization of the entire set of 64 filters extracted from the first convolutional layer of our proposed network.

Trained on Tested on
Brains Fruits

Brains 0.970 0.559
Brains and fruits 0.965 0.580
Fruits 0.598 0.966
Fruits and brains 0.858 0.945

Table 2: Cross-data performance evaluation on brain vs. fruit
images.

Trained on Tested on
Brains Fruits

Art. Motion 0.901 0.559

Table 3: The performance of the network trained on synthetic
motion data and tested on real motion data.

real-world brain and fruit dataset. This finding is another indi-
cator that the network is capable of learning the intrinsic fea-
tures of motion artifacts. In our next experiment, we tested the
generalization capability of the network when images were
acquired with different contrasts. As shown in Tbl. 4 we used
two different echo times. Training and testing on the same
contrast resulted in good performance with high levels of ac-
curacy. However, when we conducted the cross-contrast test,
the motion detecting network had reduced accuracy. This out-
come suggests that training the network on images acquired
with different contrasts is important for enabling generaliza-
tion.

We finish the description of our experimental results by
reporting the computation times. The forward pass took ap-

Trained on Contrast Tested on Contrast
TE4 TE8

TE4 0.999 0.845
TE8 0.783 0.997

Table 4: Cross-testing the network on images featuring two
different contrast levels as determined by echo times used dur-
ing MR image acquisition.

proximately 1.34 ms, whereas the backward pass required
1.29 ms. Hence, the network can process an entire brain scan
in less than 500 ms. This processing time allows making au-
tomated decisions on accepting or rejecting a recorded volu-
metric image immediately after the scan is over.

4. DISCUSSION AND CONCLUSION

In this work, we trained our neural networks and made pre-
dictions based on 2D slices rather than 3D volumes. We had a
twofold rationale for this approach. First, we wanted to gener-
ate as much training and test data as possible by converting a
single 3D volume to possibly hundreds of 2D slices. Second,
given a 3D volume as input, we could always make predic-
tions from a subset of slices extracted from the volume, finally
making a weighted decision whether an input 3D volume was
affected by motion or not. In our experiments, we observed
that training the network on images acquired with different
sequence parameter settings is important in order to achieve
good generalization to all classes of data. This would poten-
tially require constructing a large database of scans acquired
with actual sequences and instrumental parameters, which is
a difficult and time-consuming task.

In its current state, our method can be used for automated
decision making whenever a need exists to flag a certain MR
dataset as being affected by motion. This flagging can be im-
portant, for example, when processing and analysing large
databases of MR data in a fully automated way. The tech-
nique can also be used to identify a scan as being motion-
corrupted right after acquisition. In a case in which high-
quality artifact-free MR images are required for medical di-
agnosis, our system may advise reacquisition if motion arti-
facts are detected. Future work might involve extending our
method to fine-graded predictions (i.e. motion strength) and
predicting underlying motion parameters (e.g. 6 degrees of
freedom for 3D).

Our results indicate that a learning-based approach to de-
tecting motion artifacts is promising. The network is able to
generalize to unseen data and detect motion with high accu-
racy. The approach can potentially be used in clinical practice
to tag scans as motion-free or motion-corrupted immediately.
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