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ABSTRACT

Extracting information from functional magnetic resonance
images (fMRI) has been a major area of research for more
than two decades. The goal of this work is to present a new
method for the analysis of fMRI data sets, that is capable to
incorporate a priori available information, via an efficient op-
timization framework. Tests on synthetic data sets demon-
strate significant performance gains over existing methods of
this kind.

Index Terms— fMRI Data Analysis, Dictionary Learn-
ing, Blind Source Separation

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a powerful
non-invasive technique suitable for providing important infor-
mation concerning the brain activity. Studying the different
areas in the brain that correspond to important tasks such as
vision, perception, recognition, etc., constitutes a major open
area of research, demanding robust and high precision tech-
niques for the analysis of fMRI data [1], [2], [3], [4].

Such data are generated as a sequence of 3D images of
the brain, which are successively acquired along time. Each
one of these images is formed by the concatenation of ele-
mentary cubes, called voxels. Accordingly, the signal mea-
sured at each voxel reflects the degree of activity in a certain
brain spot. Each 3D image is unfolded into a large row vector,
x = [x1, x2, . . . , xN ] ∈ RN , where N is the total number of
voxels. Then, all such data vectors are concatenated together
to form the data matrix, X ∈ RT×N , where T is the total
number of successive acquisition time instants.

In the brain, a number of different functions/processes
take place simultaneously; the obtained measurments con-
sist of a mixture of various activation signals referred to as
sources. The aim of fMRI data analysis is to unmix those
sources in order to reveal both their activation patterns as well
as the corresponding activated brain areas.

From a mathematical point of view, the source unmixing
task can be described as a problem of factorization of the data
matrix, i.e.,

X ≈ DS, (1)
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where D ∈ RT×K is a matrix, whose columns represent the
activation patterns or time courses (also called atoms), asso-
ciated with each one of the sources, S ∈ RK×N is the ma-
trix whose rows model the brain areas activated by the cor-
responding sources, and K is the number of sources, whose
value is set by the user. The rows of the matrix S are usually
referred to as spatial maps.

fMRI essentially measures the changes in the level of
oxygen in blood caused by the neural activity, which yields
an indirect measure of the latter. More specifically, the ob-
served/measured signal results from the convolution of the
true activations with the, so called, Hemodynamic Response
Function (HRF). The HRF varies across different persons as
well as across different brain areas of the same person [5].

A widely used tool in fMRI analysis is the General Linear
Model (GLM), which relies on the assumed form of the HRF
in order to construct the matrix D in Eq. (1). In particular,
the specific design of each experiment allows to make a guess
of the true time instances, where the activations are expected
to appear. Adopting a functional form for HRF and convolv-
ing it with the expected activation sequence, the time course
corresponding to the specific task can be estimated and con-
sidered known. Hereafter, such estimated time courses are
referred to as task-related time courses.

Alternatively, one might use a blind source separation
(BSS) approach, which can simultaneously estimate D and S
without having a resort to any assumptions regarding HRF. To
this end, different assumptions concerning either statistical
or structural properties of the involved matrices are adopted.
Namely, Independent Component Analysis (ICA) [6], [7],
[8], which has been widely used in the fMRI unmixing prob-
lem, assumes independence among the sources, whereas
Dictionary Learning (DL)-based techniques [9], which have
been gaining more attention recently, exploit the fact that the
matrix S is expected to be sparse. This is true, since the brain
can be considered as a sparse system; each task/function pro-
duces an activation pattern which appears localized in specific
regions [10].

Recently, a method called Supervised Dictionary Learn-
ing (SDL) [11], which allows the incorporation of informa-
tion related to the HRF in a BSS framework, was presented,
leading to enhanced results. However, both GLM and SDL
suffer from the same shortcoming; that is, a sufficiently accu-
rate assumption about the functional form of the HRF needs
to be made.
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In this paper, a new DL method is proposed, which, al-
though it exploits the benefits of incorporating some a priori
knowledge concerning the HRF, allows for substantial toler-
ance against inaccurate choices of its respective form.

2. ASSISTED DL FOR fMRI DATA ANALYSIS

2.1. Supervised Dictionary Learning

The starting point in the formulation of the SDL lies in the
splitting of the main dictionary in two parts:

D = [∆,DF ] ∈ RT×K , (2)

where the first part, ∆ ∈ RT×M , is constrained to contain the
imposed task-related time courses and is considered fixed. In
contrast, the second part, DF ∈ RT×(K−M), is the variable
one to be estimated via DL optimizing arguments.

The result is still a DL scheme but it incorporates a num-
ber of specific time courses; it turns out that the reported re-
sults lead to an enhanced performance, compared to those ob-
tained via a standard DL technique. Nevertheless, this ap-
proach still inherits the same major drawback associated with
GLM. That is, the constrained dictionary atoms (columns of
the ∆ matrix) only help if the a priori imposed information is
sufficiently accurate. If the imposed time courses are shifted
or miss-modelled, their contribution can have a detrimental
effect, leading to wrong results.

2.2. Atom-Assisted DL

In this paper, an alternative approach is presented, which pro-
vides a more relaxed way of incorporating the a priori adopted
forms of the time courses. The main idea is to consider that
the atoms of the constrained part are not necessarily equal
to the a priori selected ones. Instead, a looser constraint is
employed, embedded in the optimization process. Thus, the
strong equality requirement is relaxed by a looser similarity
distance-measuring norm constraint.

Thus, if part of the a priori information is not accurate
enough, since the constrained atoms are not considered fixed
any more, the method is free to readjust them, with respect
to the information that resides in the data, in an optimal way.
It turns out that such an approach robustifies the procedure
against the major drawback associated with the HRF-based
methods: the miss-modelling.

The starting point is, again, to split the dictionary:

D = [DC ,DF ] ∈ RT×K . (3)

In contrast to the SDL approach, the constrained part, DC ∈
RT×M , is not considered fixed any more, instead, it can vary
in line with the constrained optimization cost.

The optimization task, adopted here, is formulated as:

(D̂, Ŝ) = argmin
D,S

‖X−DS‖2F + λ ‖S‖1,1 s.t. D ∈ D (4)

where ‖S‖1,1 =
∑K
i=1

∑N
j=1 |sij | is the sparsity-promoting

term over the coefficient matrix, ‖·‖F stands for the Frobenius

norm and D is an admissible set of dictionaries. In this case,
D comprises the dictionaries sharing the following property:

D =

{
D ∈ RT×K :

‖di − δδδi‖22 6 cδ, ∀i ∈ [1,M ] ⊂ N
‖di‖22 6 cd, ∀i ∈ [M + 1,K] ⊂ N

}
,

(5)
where N is the set of natural numbers, ‖·‖2 denotes the Eu-
clidean norm, di is the ith column of the dictionary D and δδδi
is the ith a priori selected task-related time course. The con-
stant cδ is a user-defined parameter which controls the degree
of similarity between the constrained atoms and the imposed
time courses. Note that the first term of the objective function
above is invariant to scale transformations [12], and hence, in
order to prevent degenerate solutions, the remaining dictio-
nary atoms are constrained to have a bounded norm no larger
than a prefixed parameter cd.

2.3. Optimization Method

In order to solve the previous optimization task, the
Majorization-Minimization (MM) principle [13] is adopted.
No doubt, any other relevant optimization method can be
mobilized, and its most appropriate choice is currently under
study. Although the adoption of the MM method does not
necessarily involve a Lagrangian relaxation, this approach is
followed here for simplicity. Thus, the equivalent optimiza-
tion task, via the corresponding Lagrangian formulation of
the minimization problem in Eq. (4), is formulated as

(D̂, Ŝ) = argmin
D,S

φλ,γ(D,S), where (6)

φλ,γ(D,S) = ‖X−DS‖2F + λ ‖S‖1,1 + Pγ(D). (7)

Pγ(D) depends on the dictionary and is defined as

Pγ(D) =

M∑
i=1

γi

[
(di − δδδi)T (di − δδδi)− cδ

]
+

+

K∑
i=M+1

γi
(
dTi di − cd

)
,

(8)

where the introduced parameters, γi, i = 1, 2, . . . ,K corre-
spond to the associated K Lagrangian multipliers.

Eq. (8) can be compactly expressed as:

PΓ(D) = tr
[
Γ (D−∆M)

T
(D−∆M)−C

]
, (9)

where M ∈ RM×K is a rectangular diagonal matrix with
diagonal entries equal to one, Γ = diag(γ1, γ2, . . . , γK) and
C is the diagonal matrix with the corresponding parameters
cδ and cd on its diagonal. Accordingly, the cost function (7)
is rewritten as:

φλ,Γ(D,S) = ‖X−DS‖2F + λ ‖S‖1,1 + PΓ(D). (10)

2.4. The Algorithm

The optimization with respect to D and S is a challenging one
and is greatly simplified by adopting a two-step alternating
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minimization iterative procedure. In particular, starting from
arbitrary estimates, D(0) and S(0), the algorithm comprises
the following steps:

Step I min
S
φλ,Γ(D,S) given D, (11)

Step II min
D

φλ,Γ(D,S) given S. (12)

Following the MM scheme, for each step, the objective
function is replaced by a surrogate one, which majorizes it
and is easier to be iteratively minimized compared to the orig-
inal one. The surrogate function is not unique, but it has to
satisfy specific conditions, e.g., [13].

2.4.1. Step I: Coefficient Update

At the tth step of the alternating minimization of Eq. (11),
the objective function is minimized with respect to S keeping
D fixed at its currently available estimate, D = D(t). This
minimization is also achieved in an iterative way and through
the introduction of a surrogate function. Starting the itera-
tions from the currently available estimate, S[0] = S(t), the
estimate, S[n], at the nth iteration, is obtained in terms of the
previous estimate, S[n−1], by minimizing the following sur-
rogate function [13],

ψλ(S,S
[n−1]) = φλ,Γ(D,S) + πS(S,S

[n−1]), (13)

where
πS(S,S

[n−1]) := cS
∥∥S− S[n−1]

∥∥2
F
−
∥∥DS−DS[n−1]

∥∥2
F

and cS >
∥∥DTD

∥∥
2

is a constant with ‖·‖2 now standing
for the spectral norm. Thus, two different iterations run in a
nested form; for each iteration with respect to (t), there is an
(inner) iteration with respect to [n].

Let A := 1
cS

(
DTX +

(
cSIK −DTD

)
S[n−1]). It can

be shown that the optimum value of the surrogate function
above is found by shrinking the elements in A, that is,

S[n] = Sλ(A), where (14)

Sλ(A) : sij =

{
aij − λ

2 sign (aij) if |aij | > λ
2

0 otherwise
. (15)

The iterative update continues until a stopping criterion is sat-
isfied. The pseudocode for this coefficient update is presented
in Algorithm 1.

2.4.2. Step II: Dictionary Update

In the second step of the alternating minimization, the objec-
tive function is minimized with respect to D, keeping S fixed
at its currently available estimate, S = S(t+1). A majoriza-
tion rationale is also used for this step as well.

To this end, an appropriate surrogate function is intro-
duced given by

ψΓ(D,R) = φλ,Γ(D,S) + πD(D,R), (16)

where

πD(D,R) = cD ‖D−R‖2F − ‖DS−DR‖2F ,

Algorithm 1 - Step I (Coefficient Update)
1: Initialization: cS >

∥∥DTD
∥∥
2
, S[0] = S(t), n = 0

2: repeat
3: n = n+ 1
4: A = 1

cS

(
DTX +

(
cSIK −DTD

)
S[n−1])

5: S[n] = Sλ(A)
6: until stop criterion is satisfied∗

7: output: S(t+1) = S[n]

Algorithm 2 - Step II (Dictionary Update)
1: Initialization: cD >

∥∥STS
∥∥
2
, D[0] = D(t), n = 0

2: repeat
3: n = n+ 1
4: B = 1

cD

(
XST + R

(
cDIK − SST

))
5: D[n] = U(B)
6: until stop criterion is satisfied∗

7: output: D(t+1) = D[n]

∗ In this paper, a fixed number of iterations is used.

cD >
∥∥STS

∥∥
2

is a constant and R = D[n−1] is the estimate
of the dictionary of the previous step.

Minimizing Eq. (16) with respect to D takes place also
iteratively, starting from D[0] = D(t). The optimum value of
the surrogate function is found at the point of zero gradient:

∇DψΓ = −2XST+2 (D−∆M)Γ+2cD (D−R)+2RSST .
(17)

Setting the derivative above equal to zero, solving for D
and setting γi to values that satisfy the Karush-Kuhn-Tucker
(KKT) conditions (details are omitted due to lack of space),
a two-step procedure for the dictionary update results, fol-
lowing arguments similar to those in [13]. Namely, an
intermediate quantity B is first defined and computed as
B := 1

cD

(
XST + R

(
cDI− SST

))
. Thus, the estimates

of the update dictionary atom can be summarized using the
operator D[n] = U(B) where U(B) : ui → d

[n]
i is given by:

d
[n]
i =


for i∈[1,M ] ,

{
bi if ‖bi − δδδi‖22 6 cδ
cδ(bi−δδδi)
‖bi−δδδi‖22

+ δδδi otherwise

for i∈[M+1,K] ,

{
bi if ‖bi‖22 6 cd
cd
‖bi‖22

bi otherwise

,

(18)
It is not difficult to show that after this update, the KKT

conditions for all dictionary columns hold. Moreover, the set
of all admissible dictionaries, D, constitutes a convex non-
empty set. It can be shown that this fact guarantees that the
proposed algorithm converges for random initialization. Due
to the space limitations imposed by a conference paper, de-
tails are omitted. The pseudo-code for this dictionary up-
date is presented in Algorithm 2. Furthermore, the MAT-
LAB code for this method can be freely downloaded from
https://github.com/MorCTI/Assisted-DL.git.

3. PERFORMANCE EVALUATION
The aim of this section is twofold. First, to demonstrate the
advantages of incorporating external information about task-
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related time courses. Second, to compare the sensitivity of
the proposed scheme with that of SDL, in cases where the
imposed time courses deviate from the true ones.

The data set used is synthetic and generated with SimTB1

[19]. In order to make the data more realistic, the sources
3, 4, 5, 7, 8 of the data set in [14], which represent machine
artifacts, are also added. The data set used can be downloaded
from (https://github.com/MorCTI/Assisted-DL.
git). In Fig. 1, as an example, 6 among the 20 sources
used in total are depicted. Note that the current performance
evaluation cannot be realized based on real fMRI data, since
in such a case the ground truth is not known.

With respect to the SDL and atom-assisted DL methods,
the larger the number of time courses which are imposed as
constraints in the algorithm, better is the performance ob-
served due to the fact that a larger amount of information is
provided. Therefore, in order to make things harder, in the
evaluation tests that follow, only one task-related time course
is considered. Moreover, two different miss-modeling cases
are examined. In the first one, the task-related time course is
a time-shifted version of the true one. The result is shown in
Fig. 2a, where the solid and the dashed lines correspond to the
atom-assisted DL and the SDL, respectively. The horizontal
axis represents the time shifting of the imposed task-related
time course in relation to the true one, expressed in seconds.
The vertical axis shows 1 − R2, with R being the correla-
tion coefficient between the estimated and the true source. It
is apparent that the proposed scheme offers enhanced robust-
ness allowing time discrepancies up to 4 seconds (2 seconds
in each direction) without any performance degradation. If
some performance loss is allowed, 6 seconds of time shift are
well tolerated.

In the second miss-modeling scenario, shown in Fig. 2b,
the imposed time course results from the convolution of the
experimental task event with an HRF which is different from
the true one. For the construction of the different tested HRFs,
the canonical HRF model is adopted [20]. In order to per-
form this study, the free parameters of the canonical HRF
model are gradually modified leading to HRFs with a succes-
sively narrower shape compared to the true HRF. In particular,
the horizontal axis shows the squared correlation coefficient,
R2
HRF , between the true HRF and the modified HRF of the

corresponding imposed time course. Again, the vertical axis
shows 1 − R2, with R being the correlation coefficient be-
tween the estimated and the true source. Once again, it is

1SimTB simulator is a free MATLAB toolbox available for download in
(http://mialab.mrn.org/software), which has been lately
adopted in a number of fMRI data analysis studies, e.g. [15],[16],[17],[18].
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Fig. 1. Selection of different simulated sources. In the first
column, Gaussian, subgaussian and supergaussian artefacts
are plotted from the artificial data set in [14]. In the second
column, three other simulated yet realistic brain sources are
shown. The first one corresponds to the source of interest.
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Fig. 2. Squared correlation coefficient between the estimated
source and the true one for the two miss-modelling experi-
ments.

observed that the proposed method is insensitive to large de-
viations between the provided information and the true one.

In both cases, the dot-dashed curve corresponds to the
fully blind approach, i.e., when no information regarding the
task-related time course is provided. Obviously, the fully
blind approach fails to estimate the signal of interest. This
happens since in the experimental setup it has been provi-
sioned that the signal of interest a) exhibit significant space
overlap with artefact sources and other physical sources and
b) have overall energy not higher than of its neighbouring
sources. This design generates a hard but realistic experimen-
tal scenario, in which other conventional blind source sepa-
ration methods, such as ICA [7] or k-SVD [9] fail to recover
the source of interest. The latter was confirmed with various
simulation studies, which will be presented elsewhere due to
space limitations.

Note that both in the current and in the next experiment,
all curves result from the ensemble average of 20 indepen-
dent runs. Besides, the majorization optimization approach
was also used in the SDL case for the dictionary learning task
substituting the online DL optimization, [21], used in the orig-
inal paper. Note that the SDL is just a particular case of ADL,
with cδ = 0. In any case, it was verified via extensive simula-
tions that the two optimization approaches resulted in similar
performance. In the atom-assisted DL case, the parameters,
cδ , cd, λ were set equal to 0.3, 1, 200, respectively. More-
over, 50 iterations were performed for Algorithms 1 and 2.
Finally, 1000 alternating minimization iterations were used in
all cases.

4. CONCLUSIONS

In this paper, a new source separation approach for fMRI data
analysis is proposed. The method allows for the incorpora-
tion of task-related a priori information which leads to vast
performance improvements compared to conventional fully
blind approaches. Moreover, the proposed method exhibits
enhanced robustness against miss-modelling of the imposed
extra information.
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