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ABSTRACT
The compressed sensing using dictionary learning has led to
state-of-the-art results for magnetic resonance imaging (MRI)
reconstruction from highly under-sampled measurements.
Dictionary learning had been considered time-consuming es-
pecially when the patch size or the number of training patches
is large. Recently, double sparsity model and online dictio-
nary learning algorithm were proposed to obtain dictionaries
with much less computational time. In this paper, we pro-
pose an efficient MRI reconstruction method by adopting the
double sparsity model with the online dictionary learning
method. Besides, for better reconstruction, we use separately
prepared fully-sampled MRI images to train dictionaries. We
compare results of the proposed technique to traditional of-
fline methods with and without double sparsity model. Our
simulation results show that the proposed technique is ap-
proximately twice faster than the traditional methods while
maintaining the same reconstruction quality. Furthermore,
our technique performed even better for lower sampling rate.

Index Terms— MRI, compressed sensing, online dictio-
nary learning, double sparsity model

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a medical imag-
ing technique based upon the nuclear magnetic resonance
phenomenon [1]. Since MRI provides abundant and detailed
anatomical information without any radiation exposure, it is
widely used for diagnosis and treatment. In MRI, signals are
sampled in k-space (the spatial Fourier transform domain)
sequentially in time, thus time consuming. The long scanning
time may cause motion artifacts or discomfort of patients.
Therefore, reducing the amount of signals to speed up the
acquisition under the promise of high imaging quality has
become a hot research topic, since Lustig et al. addressed this
problem in their milestone paper [2].

The compressed sensing (CS) theory enables to recover
signals or images from far fewer samples when the signal
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has a sparse representation in some transform domains and
the acquisition of signal is incoherent [3]. The CS theory is
directly applicable to the problem of accelerating MRI scan-
ning, because MRI images meet the sparsity condition and
MRI acquisition can be designed to achieve incoherent under-
sampling [2].

In CS-based MRI recovery, wavelet transform and total
variation are frequently employed [4], [5]. These transforms
are, however, limited for not highly under-sampled signals be-
cause such fixed sparse transforms are not always optimal for
individual signals. To find a more appropriate transform, dic-
tionary learning has been recently applied to CSMRI. Rav-
ishankar et al. proposed an outstanding MRI method named
DLMRI using a patch-based dictionary learning algorithm [6]
with K-SVD [7]. This is a typical dictionary learning method
exploited in CS-MRI for a single image [8], [9] or image
series [10]. Because K-SVD is time consuming, however,
DLMRI is computationally expensive.

In this paper, to accelerate MRI recovery, we propose to
use the double sparsity model [11] with the online dictionary
learning method [12]. Since double sparsity model imposes a
special structure of a product between a fixed base dictionary
and an adaptive sparse dictionary, the reconstruction process
can be accelerated. On the other hand, because of the struc-
ture, reconstruction quality can be degraded. To prevent it,
we further propose to use separately prepared fully-sampled
images to train dictionary. After training a dictionary, the or-
thogonal matching pursuit (OMP) algorithm computes sparse
representations for all patches. Simulation results show that
our technique saves more than half of computational time and
recovers MRI images with the same high quality compared
to the DLMRI method. It should be noted that our technique
works even better for higher compression rate.

The rest of the present paper is organized as follows. Sec-
tion 2 reviews the method of DLMRI. Section 3 shows our
technique to apply the double sparsity to DLMRI and to use
fully-sampled images to improve results. Section 4 shows
that we apply the online dictionary learning method to fur-
ther reduce the run time. Section 5 evaluates our technique
by performing simulations using actual MRI images. Section
6 concludes the paper.
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2. DICTIONARY LEARNING MRI

Following [6], we also handle MR image reconstruction
as well as dictionary learning using overlapping 2D image
patches. The overlap stride r is defined to be the distance
in pixels between corresponding pixel locations in adjacent
image patches. For an image x ∈ CP, xi j ∈ Cn denotes a
square image patch of size

√
n ×
√

n while (i, j) means the
location of its top-left in the image. Ri j denotes the operator
that extracts a patch from the image x, meaning xi j = Ri jx.
Assuming patches wrap around edges of image, each pixel
will be represented by n patches when the overlap stride r = 1.
The process of reconstruction aims to solve the problem

argmin
x,D,C

∑
i j

∥∥∥Ri jx − Dci j

∥∥∥2
2 + ν ∥Fux − y∥22

s.t.
∥∥∥ci j

∥∥∥
0 ⩽ T0 ∀i, j,

(1)

where Fu is the under-sampled Fourier transform and x is
a vector representation of the reconstructed image from the
measurements y. D denotes the dictionary of size n × m.
ci j ∈ Cm denotes the sparse representation for xi j. C of size
m×N denotes the set of representations ci j for all patches. T0
is the required sparsity level for ci j. The weight ν is a positive
constant that makes the process of reconstruction more robust
to noise. The first term controls the quality of sparse approx-
imations of the image patches with respect to the dictionary
D. The second term enforces the data consistency in k-space.
However, the process of reconstruction is computationally ex-
pensive.

3. DOUBLE SPARSITY DLMRI WITH TRAINING
DATA

To accelerate MRI recovery, we apply double sparsity
model to DLMRI. This model represents the dictionary D by
a product of a fixed base dictionary Φ of size n × L and an
adaptive sparse dictionary A of size L × m as D = ΦA. Then,
the problem in (1) becomes

argmin
x,A,C

∑
i j

∥∥∥Ri jx − ΦAci j

∥∥∥2
2 + ν ∥Fux − y∥22

s.t.
{∥∥∥ci j

∥∥∥
0 ⩽ T0 ∀i, j,

∥ak∥0 ⩽ T1 ∀k,

(2)

where T1 is the required sparse level for each column ak in the
sparse dictionary A. However, since double sparsity model
imposes a special structure to dictionary, reconstruction qual-
ity can be degraded. To prevent it, we use fully-sampled data
in each iteration to improve the quality. Thus, the problem in

(3) becomes

argmin
x,A,C,Cz

∑
i j

∥∥∥Ri jx − ΦAci j

∥∥∥2
2 + ν ∥Fux − y∥22

+µ ∥Z − ΦACz∥2F s.t.


∥∥∥ci j

∥∥∥
0 ⩽ T0 ∀i, j,

∥ak∥0 ⩽ T1 ∀k,∥∥∥cz
l

∥∥∥
0 ⩽ T0 ∀l,

(3)

where Z is a matrix of size n × M containing M patches ex-
tracted from fully-sampled training MR images, Cz is a set of
sparse representations for Z, and ∥·∥F is the Frobenius norm.
We request the same sparse level T0 for each column cz

l of Cz.
The third term provides prior information from the training
images and µ controls the balance between the three terms.

4. MR IMAGE RECONSTRUCTION USING ONLINE
DICTIONARY LEARNING

The problem proposed in (3) is NP-hard. Thus, we choose
to divide it into a sparse dictionary learning step and a re-
construction update step and iteratively solve them with some
variables fixed.

4.1. Dictionary Learning

In this stage, x is fixed while A, C, and Cz are free. In
other words, we update the sparse dictionary and sparse rep-
resentations in this step. The problem can be stated as

argmin
A,C,Cz

∑
i j

∥∥∥Ri jx − ΦAci j

∥∥∥2
2 + µ ∥Z − ΦACz∥2F

s.t.


∥∥∥ci j

∥∥∥
0 ⩽ T0 ∀i, j,

∥ak∥0 ⩽ T1 ∀k,∥∥∥cz
l

∥∥∥
0 ⩽ T0 ∀l.

(4)

In [11], the base dictionary is discrete Fourier transform while
[12] chose the wavelet transform that performed better. In this
paper, we also use the wavelet transform as the base dictio-
nary. In particular, Daubechies 9 was used in the simulations
below. Although this problem can be solved by K-SVD, we
adopt an online method [12] to accelerate the procedure. In
the online method, training patches will be divided into some
mini-batches. The sparse dictionary A is updated by com-
puting a gradient using one of the mini-batches. This update
continues until all mini-batches are used. For better quality of
dictionary, we can repeat the process for several times. To fur-
ther reduce computational complexity, we only use a fraction
of all patches of the reconstructing image and fully-sampled
images as training data. To exploit various image character-
istics as much as possible, we randomly choose the patches
from the fully-sampled images, which is also changed at ev-
ery iteration.

Once the sparse dictionary A has been learnt from the
training data, we apply it to all patches of reconstructing im-
age x and update the sparse representations by the OMP al-
gorithm.
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4.2. Image Reconstruction

There is only one free variable in the second sub-problem.
The problem becomes

argmin
x

∑
i j

∥∥∥Ri jx − ΦAci j

∥∥∥2
2 + ν ∥Fux − y∥22 . (5)

This is a simple least squares problem admitting an analyt-
ical solution. The solution of this problem can be obtained
similarly to the reconstruction update step in the DLMRI al-
gorithm [6]. The update of x is essentially done in k-space
(Fourier domain) by averaging the sparse solutions and the
original acquisitions for k-space locations that were acquired.
Then, the final expression for reconstructed image x at this
iteration is

(Fx)(kx, ky) =
{

s(kx, ky), (kx, ky) < Ω,
s(kx,ky)+νs0(kx,ky)

1+ν , (kx, ky) ∈ Ω,
(6)

where (Fx)(kx, ky) represents the updated value of 2D Fourier
transform at location (kx, ky), s0 = FFH

u y represents the zero-
filled k-space measurements, s(kx, ky) represents the updated
k-space data value obtained by averaging contributions of
patches, and Ω represents the subset of k-space data that has
been sampled.

The proposed algorithm is shown in Algorithm 1. The al-
gorithm is initialized with a zero-filled Fourier reconstruction.

Algorithm 1 proposed algorithm
Input: under-sampled k-space measurements, y
Output: reconstructed MR image, x

1: Initialize reconstructed image x = FH
u y, number of re-

construction iteration Iter
2: for t = 1 to Iter do
3: Randomly extract patches from x as training data Yt

and choose fully-sampled patches as training data Zt;
4: Update sparse dictionary A for Yt and Zt by the method

mentioned in section 4;
5: Apply A to all patches and obtain sparse representa-

tions C by OMP;
6: Update each pixel of x by averaging the value of all

patches;
7: Transform image x to k-space data s;
8: Update k-space data s by the method mentioned in sec-

tion 4.2;
9: Transform k-space data s to image x;

10: end for
11: return x

5. SIMULATIONS

Fully sampled axial brain scans were acquired from a
healthy male of twenty years old for the analysis of the

Table 1. PSNR(dB) under different methods
Sampling 1/3 1/5 1/8

Zero-Filled 20.80 20.79 16.56
DLMRI 40.73 38.84 32.06

DS+KSVD 40.64 38.75 32.27
DS+OL w/o Data 40.66 38.74 32.33

Proposed 40.79 38.87 32.30

Table 2. Run time(s) under different methods
Sampling 1/3 1/5 1/8
DLMRI 944.44 874.33 877.09

DS+KSVD 668.02 643.79 645.92
DS+OL w/o Data 395.84 372.51 374.05

Proposed 398.79 374.36 376.37

proposed method. The images in the dataset are in the Di-
com format and their size is 256 × 256. We choose 10
images of ’MR0050’ through ’MR0059’ for the simulation.
Fig.1(a) shows the image of ’MR0050’. We used images
from ’MR0060’ to ’MR0109’ as training data.

The parameters for the proposed algorithm were set as
patch size

√
n = 4, number of sparse dictionary atoms L = 64,

sparsity level of sparse representations T0 = 0.15 × 16, spar-
sity level of sparse dictionary T1 = 40, the error target in the
process of sparse coding ϵ = 0.023, weight ν = 140, weight
µ = 1. We used N + M = 20, 000 patches for dictionary
learning and divide them into 5 batches. In the step 4 of Al-
gorithm 1, each of these 5 batches is used 3 times to update
the sparse dictionary A. These parameters were chosen based
on empirical tradeoffs between performance and efficiency.
We apply random 2D discrete Fourier transform to all fully
sampled data, and the compression rates we used are 1/3, 1/5,
1/8. Fig.1(b) shows the 3 fold under-sampling mask we used.
The noise was not introduced manually because the data we
used here are real observed ones.

The proposed method was compared to the DLMRI, the
double sparsity model implemented with KSVD (DS+KSVD),
and the double sparsity model implemented with online dic-
tionary learning without any additional fully-sampled data
in the process of reconstruction (DS+OL w/o Data). For
these methods, we used the same parameters as the proposed
method. The implementation of DLMRI is publicly available
in [13]. Since the step of sparse coding in this code is writ-
ten by MATLAB and the OMP algorithm in this code is not
well implemented, the quality of the reconstructed images
was not good. For better comparison, we replaced the OMP
algorithm in this program by another implementation written
by C++ [14]. All programs were run using Matlab R2015b
on Macbook with 2.4GHz Intel Core i5 processor and 8 GB
memory. The quality of the reconstruction is measured using
PSNR (in dB) which is computed as the ratio of the peak
intensity value of the reference image to the root mean square
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(a)Target (b) Smapling mask (c) Zero Filled (21.99 dB)

(d)DLMRI (39.74 dB) (e)DS+KSVD (39.65 dB) (f) Proposed Method (39.74 dB)

Fig. 1. Simulation Results.

reconstruction error relative to the reference (error computed
between image magnitudes).

Fig.1 presents results for the axial brain data with 2D
3 fold random under-sampling. The PSNR of the proposed
method (39.74dB) is same as that of the DLMRI (39.74dB),
indicating that our method can obtain the same high quality
image as DLMRI. Table 1 presents the average of the PSNRs
for the 10 images under different methods and three differ-
ent under-sampling rates. We can see that double sparsity
model degraded image quality than DLMRI as expected. The
use of the online dictionary learning and the fully-sampled
data recovered the image quality. Note that finally, the qual-
ity obtained by the proposed method is slightly better than
DLMRI. Table 2 presents the run time of three methods un-
der three different under-sampling rates. The run time of pro-
posed method is less than half of that for DLMRI. From the
results, we can see that both the double sparsity model and
online algorithm helped to reduce the run time and that the
use of training images helped to improve the image quality.
Note that the results have converged when the compression
rate is 1/3 and 1/5 while the results did not yet converge when
compression rate is 1/8.

6. CONCLUSION

In this work, we proposed an adaptive sparse dictionary
learning based algorithm for MR image reconstruction from
highly under-sampled k-space data using the double sparsity
model with the online dictionary learning method. The pro-
posed algorithm alternates between a sparse dictionary learn-
ing step, and a reconstruction update step. For each itera-
tion, we used fully-sampled data to improve the results. The
proposed algorithm, due to the efficiency of double sparsity
model and online dictionary algorithm, provided comparable,
slightly even better reconstructions to the previous methods.
Most importantly, our approach is significantly faster than the
previous DLMRI approach [6]. In the future, we expect to
provide even greater speed-ups over DLMRI for larger patch
sizes and higher image quality. To analyze the convergence
of the proposed method theoretically is also our future work.
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