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ABSTRACT1 

 

We present a system for acoustic scene classification, which is the 

task to classify an environment based on audio recordings. First, 

we describe a strong low-complexity baseline system using a 

compact feature set. Second, this system is improved with a novel 

class of audio features, which exploit the knowledge of sound 

behaviour within the scene – reverberation. This information is 

complementary to commonly used features for acoustic scene 

classification, such as spectral or cepstral components. For 

extracting the new features, temporal peaks in the audio signal are 

detected, and the decay after the peak reveals information about the 

reverberation properties. For the detected decays, statistics are 

extracted and summarized over time and over frequency bands. 

The combination of the novel features with features used in state-

of-the-art algorithms for acoustic scene classification increases the 

classification accuracy, as our results obtained with a large in-

house database and the DCASE 2016 database demonstrate.  

Index Terms— Acoustic scene classification, feature 

extraction, reverberation 

 

1. INTRODUCTION 

 

Acoustic scene classification (ASC) is the technology which aims 

at recognising the type of an environment where the user is located 

only from the sound recorded at that place - the sound events 

occurring at the specific environment and/or the sounds that 

environments produce themselves. It is one of the tasks in the field 

of computational auditory scene analysis (CASA) [1, 2]. Over the 

last years, a lot of progress has been made. This was mainly 

fostered by the public DCASE challenges organised in 2013 and 

2016 [3, 4]. The progress in the field is synchronised to the field of 

acoustic event detection [5], as the two tasks are closely related, 

and similar technologies are used. It was already shown how ASC 

technology could be integrated into real products, such as 

smartphones [6, 7]. 

Generally, the ASC process is divided into two phases: training 

and classification. The model training phase involves estimation of 

scene models in terms of suitable classifier (SVM, GMM, neural 

networks…). It is done by extracting audio features from each 

instance of the audio recording database, and by training the 

system with the known samples of all classes. The classification 

phase requires scene models obtained in the training phase and it 

involves extraction of the same features from an unknown audio 
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sample. Based on these two inputs, the unknown audio sample is 

classified into the best matching class [8]. 

An important part of ASC is to define and extract properties 

that characterize a certain environment – audio features. Previous 

work on acoustic scene classification investigated the application 

of various spectral, energy and voicing-related features [9]. The 

most commonly used categories of features are cepstral [10], 

image processing [11], voicing [10] and spatial features [12]. A 

class of spectro-temporal audio features that was originally 

proposed for robust speech recognition [13] has been successfully 

used for acoustic event detection in [14]. Most of the previously 

proposed audio features for ASC are based on properties of the 

specific acoustic events occurring in the scene, or on the relation 

and dynamics of the events. The actual acoustic properties of the 

environment, such as the type and amount of reverberation have 

mostly been neglected so far. 

In this paper, we want to investigate how the acoustic 

properties of an environment, in terms of reverberation, can be 

exploited for acoustic scene classification. We present a new 

category of features which is inspired by an approach to blind 

reverberation time (RT) estimation [15, 16]. The features are 

extracted by analyzing an audio signal in terms of sub-band energy 

decay rate [17] and by applying basic statistics for the decay rate 

distribution in time and over frequency bands. The proposed 

feature set is referred to as decay rate distribution (DRD) features 

within this paper. 

The details of the algorithm for reverberation-based feature 

extraction are given in Section 2. In Section 3, an ASC system 

based on Support Vector Machine (SVM) classifier [18] and the 

new feature category is described. The results of the mentioned 

ASC system are compared with the state-of-the-art ASC solutions 

and presented in section 4. Finally, in Section 5 the main 

conclusions on the presented work are given. 

  

2. REVERBERATION-BASED FEATURES 

 

We define a new category of audio features for ASC which is 

based on reverberation properties of enclosures or open spaces. 

Conventional features (MFCC, spectral) model the occurring 

sounds and acoustic events within the scene while the novel 

proposed feature category captures properties of the acoustic 

environment itself. A graphical overview of the algorithm is given 

in Figure 1. The steps applied on an audio recording in order to 

obtain a feature vector are grouped in three main parts: 

transformation to frequency domain, decay rate calculation and 

decay rate distribution. In order to capture the reverberation 

properties of an acoustic scene, an automatic method is employed. 

Temporal peaks are detected, and the energy decay after the peaks 

is assumed to represent a reverberation tail. Collecting statistics 

over a number of peaks and corresponding decay rates leads to a 

reverberation signature. 

781978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



STFT

+

Log

Mel 

filterbank

Peak

detection

2.2

Decay rate calculation

2.1

Transformation in 

a frequency domain

2.3

Decay rate distribution

Audio 

recording

Log-

magnitude

spectrum

Log-magnitude 

spectrum in  

frequency 

bands

… …

Number of 

peaks

per frequency 

band

LSF

+

mean

Slope 

distribution 

over time per 

frequency band

… Statistics

over

bands

Slope 

distribution 

over 

frequency 

bands

Bass

and treble

ratio
Ratios

2.1. Transformation to a suitable frequency domain 

 

Assuming that the input audio signal is given in a time domain 

(waveform), the first step is to make a suitable transformation into 

a frequency domain. The transformation is done using the short-

Time Fourier transform (STFT). The logarithm of the magnitude of 

the resulting spectrum is calculated in order to obtain log-

magnitude spectrum representation of the audio signal. 

Furthermore, a broadband spectrum is transformed to a perceptual 

scale by applying Mel-filterbank. The result is a log-magnitude 

spectrum in a number of frequency bands, with the number of 

bands Nb as defined by the Mel-filterbank.  

 

2.2. Decay rate calculation 

 

In each of the frequency bands, the log-magnitude spectrum is 

analyzed in terms of temporal peaks, where any standard well-

known algorithm could be used. Peaks are detected according to a 

pre-defined threshold value which represents the difference 

between the magnitude of the sample of interest and the 

neighbouring local maxima. Sweeping over the whole length of the 

signal, peaks that fulfil the threshold criterion are obtained. A slope 

of each detected peak is calculated by applying the linear least 

square fitting algorithm to the set of points that starts at a peak 

sample and ends after a certain, pre-defined period of time. The 

calculated slope defines the decay for each peak; the number of 

decays (the same as number of detected peaks Np) varies between 

frequency bands. Peak decays in each frequency bands define a 

vector per band (Dj), where j=(1,2,…, Nb).  

The idea behind this step is that, as each peak corresponds to a 

short maximum in energy, ideally, the signal shortly after the peak 

corresponds to the energy decay (reverberation) which depends on 

the acoustic properties of the environment. In this way, an 

unknown acoustic environment is characterized by reverberation-

related properties that help for classifying it to one of the pre-

defined category. Although the approach used here is similar to the 

reverberation time estimation, it is important to distinguish the 

two; for the reverberation time estimation, the energy decay after 

the peak has to be ‘clean’ from the other audio events in order to 

capture only the properties of the enclosure while here such a 

condition is not required; the statistics applied later on the decay 

rate helps with obtaining the environment’s properties related to 

the reverberation and not estimating the reverberation time values. 

Using the slope fitting, the reverberation properties are captured in 

the form of the decay slope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Reverberation-based feature extraction 

 

2.3. Decay rate distribution 

 

The decay distribution within each of the frequency bands is 

determined by terms of mean mt,  

  

      
      

     

   

     
,  j=(1,2,…, Nb).  (1) 

 

The result is a vector Mt of length equal to the number of 

frequency bands Nb, where each vector element represents the 

mean of decay distribution within bands over time mt. The mean is 

used here as a well known statistical descriptor in order to 

characterize the distribution of the decay rates over time. Instead of 

the mean, other statistical parameters can be applied for obtaining 

the information of the decay rates population e.g. median, mode, 

variance etc. The resulting vector serves as a first part of a final 

DRD feature vector. 

The second part of a final DRD feature vector is a result of 

decay distribution over frequency bands. For this purpose, mean 

mb and skewness sb of the vector obtained in the first step of the 

decay rate distribution (per band over time) are calculated,  
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The skewness parameter is added here in order to explore the 

asymmetry of the decay rate distribution over frequency bands. 

The idea behind the use of this parameter is that decay rate of 

different scenes shows different asymmetry of the distribution over 

frequency bands, e.g. more or less leaned towards low or high 

frequencies. This property of the decay rate distribution is shown 

in [15] where Wen et al. demonstrate the relationship between the 

skewness and the true decay rate. It was shown there that the 

distribution is ‘skewed’ more as the decay rate tends to zero. 

Finally, the third part of a final DRD feature vector is created 

as a function of elements of the vector obtained in the first 

distribution step (per band over time). A function that defines ratio 

of decay rate distribution between low and mid frequency bands is 

bass ratio (BR), while treble ratio (TR) gives the ratio between 

high and mid frequency bands, 
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The advantage of including the ratios is to reveal furthermore 

the differences of the scenes in terms of frequency band dependent 

content regarding decay rates. Bass and treble ratios are defined as 

the relative contribution of respectively low and high frequencies 

to the overall spectral energy. They are related to the subjective 

impressions of warmth and brilliance and they contribute to human 

ability to make a distinction between different acoustic 

environments [19]. 

3. ASC SYSTEM 

 

The proposed feature extraction algorithm was tested against two 

different databases of acoustic scenes. The first database is our 
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non-public, in-house database, and the second is the official 

DCASE 2016 database. A state-of-the-art algorithm for ASC is 

implemented, based on Support Vector Machine (SVM) class of 

machine learning algorithms. 

 

3.1 Baseline system 

 

A system similar to the one proposed in [10] is used as a baseline 

system. A binary SVM classifier is used with complexity C=1; we 

used the radial basis function kernel (for the in-house dataset) with 

gamma g=1/Nf, where Nf is the number of audio features. For the 

DCASE database, a linear kernel was chosen, using pair-wise 

SVMs and majority voting for the multi-class problem. The first 

set of baseline audio features is made of 12 standard Mel-

frequency cepstral coefficients (MFCC), with a window time of 20 

ms and hop time of 10 ms, together with their delta coefficients. 

MFCCs are a generally accepted baseline feature set which has 

proven to be successful in many different audio analysis tasks [20]. 

The low-level features are summarized over each 6 s (in-house 

database) or 4 s (DCASE) window using four statistical 

functionals. As a first simple baseline, we use only mean and 

standard deviation as functional, on MFCCs and MFCC deltas, 

resulting in 48 features. This system is denoted as “MFCC baseline 

1” in this paper. For a second baseline feature set, in addition, the 

mean, standard deviation, skewness and kurtosis are computed for 

the raw MFCCs. MFCC deltas use flatness, standard deviation, 

skewness, and percentile range as functional. Thus, in total, this 

feature set contains 96 features and it is used in “MFCC baseline 

2” ASC system. A third baseline set is considered which, in 

addition to the 96 MFCC features, contains 140 features based on 

Mel filterbank coefficients. 26 Mel coefficients are computed, and 

post-processed with RASTA filtering [21], auditory weighting and 

liftering. In addition, the average of these coefficients and the 

average of the unprocessed Mel coefficients are used, resulting in 

28 low-level descriptors. Five functionals are applied, which are 

the inter-quartile range 1-2 and 2-3, uplevel-time 25, uplevel-time 

75 and rise-time. Thus, the third baseline feature set contains 236 

features and it is used in “MFCC+Mel baseline” ASC system. All 

baseline feature sets were designed with the goal of low 

complexity in mind, aiming at a small feature set. The 

implementation of the features was inspired by the 

implementations in the openSMILE toolkit [22]. 

 

3.2 Reverb-based feature extraction implementation 

 

The log-magnitude spectrum representation of an audio file is 

obtained by applying STFT with the window length of 64 ms and 

16 ms hop size. The spectrum is calculated with a resolution of 

1024 frequency bins. A perceptual filterbank based on 26 Mel 

frequency bands and 0-8kHz frequency range is used to split the 

spectrum into 26 frequency bands. For each frequency band, a 

peak detection algorithm with the magnitude threshold of 10dB 

was applied and a number of peaks per band are acquired. For each 

peak, a linear regression is done on a set of consecutive points 

from the peak to the end of 5 ms time window by terms of a linear 

least-square fitting. In this way, a slope of a fitted line for each 

peak defines a decay rate. By calculating a mean of the decays over 

time per frequency band, a first part of a DRD feature vector is 

obtained and it consists of 26 values where each represents decay 

rate distribution (mean over time) per frequency band (26 

features). These 26 values are statistically analyzed by terms of 

mean and skewness and a second part of DRD feature vector is 

created with these two numbers (2 features). Finally, a third part of 

a DRD feature vector is calculated and it also consists of two 

numbers – BR and TR calculated as explained in Eq. (4) and (5) in 

the previous section (2 features). The ratios are obtained 

considering 2nd and 3rd band as low, 12th and 13th as mid and 24th 

and 25th as high frequency bands. 

The final DRD feature vector of 30 elements is then combined 

with the MFCC baseline 2 and MFCC+Mel baseline feature sets 

resulting in 126 and 266 element feature vectors, respectively. The 

new feature vectors now containing DRD features are used with 

the SVM classifier for the purpose of ASC. 

 

3.3 Audio databases for ASC 

 

Experiments were carried out with two different databases of 

acoustic scenes. ASC models were trained using a training set, and 

the performance is evaluated on an independent test set, using the 

(weighted) average accuracy over all classes as an objective 

measure. 

The first experiments used a Huawei in-house database, which 

contains audio recordings of two different classes: car and other, 

where other consists of bus and subway recordings. All classes 

correspond to moving vehicles and the recordings were made with 

the same smartphone in different conditions, e.g. device in the bag, 

in the hand, etc. The recordings are available as single-channel 

audio signals with a sampling rate of 16 kHz and 32 bit resolution. 

Overall, the database contains around 100 hours of recordings, 

recorded in many sessions of several minutes each. The two classes 

are equally represented in the database. The database is divided 

into a training set and test set, whereas recordings of one recording 

session cannot be in both sets. The training set and test set were 

both further split into small windows of 6 seconds. This way, the 

training set contains ca. 76,300 samples, and the test set contains 

ca. 22,000 samples. 

The second set of experiments is performed with the publicly 

available database for the D-CASE 2016 challenge [23]. This 

dataset contains recordings of 15 different classes: lakeside beach, 

bus, cafe/restaurant, car, city center, forest path, grocery store, 

home, library, metro station, office, urban park, residential area, 

train, and tram, recorded with a high-quality binaural microphone. 

The recordings are split into segments of 30 seconds, and for each 

scene, 78 such segments are available. The classification decision 

should be made over a 30 second segment, and the system is 

evaluated using 4-fold cross validation, following the official 

protocol for the development set. We used the development set, 

since the test set labels are not yet publicly available. Training and 

test recordings are further segmented into segments of 4 seconds, 

with an overlap of 2 seconds. For the test recordings, the majority 

vote over all windows within the 30 seconds is used.  

 

4. RESULTS 

 

The results on the car-other dataset are shown in Table 1, for 

different combinations of the tested feature sets, i.e. for the three 

baseline feature sets, for the DRD feature set alone, and for the 

combinations of the baseline sets with the DRD features (for the 

combinations, the MFCC baseline 2 and MFCC+Mel baseline with 

96 and 236 features are used). Results are shown separately for car 

and other, as well as the average accuracy; the table also lists the 

number of features (Nf) extracted for each case. Compared to the 

first baseline features (48 features, average 84.4% accuracy), our 

extended feature sets manage to increase the accuracy to 87.7% 
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and 90.0%, while keeping the number of features low. DRD 

improves the accuracy of MFCC baseline 2 system from 87.7% to 

89.7%, and the accuracy of the large baseline system from 90.0% 

to 90.3%. 

The results obtained with the publicly available DCASE 2016 

dataset are given in Table 2. Here, we included the official baseline 

system given by the organizers of the challenge, two of our own 

implementations with different feature sets, as well as the results of 

some state-of-the-art methods published for the purpose of the 

challenge. We included a rough estimate of the system complexity, 

based on the number of features, training and test complexity of 

the classifier, and overall system complexity (e.g., fusion of several 

systems). All results are obtained with the official development set. 

The baseline system has a medium complexity and reaches 72.5% 

accuracy for the 15 classes. Using our ASC system based on SVM 

approach (described in Section 3.3), we achieve a result of 75.9%. 

This result is further improved by adding introduced DRD features, 

reaching 77.8%.  

 

Table 1: ASC system accuracy on the internal dataset 

Features Nf 
Car 

[%] 

Other 

[%] 

Average 

[%] 

MFCC baseline 1 48 76.3 92.4 84.4  

MFCC baseline 2 96 82.4 93.0 87.7  

MFCC+Mel baseline 236 85.7 94.3 90.0  

DRD 30 75.8 72.9 74.3  

MFCC baseline 2 
+DRD 

126 85.3 94.1 89.7  

MFCC+Mel baseline 

+DRD 
266 86.2 94.4 90.3  

 

The other results are obtained from participants of the 2016 

DCASE challenge. We included some of the top-performing 

results in order to compare the accuracy of the proposed ASC 

system with other state-of-the-art methods in terms of feature 

number, complexity and accuracy. The best-performing system in 

the challenge reaches 89.9% accuracy and is based on fusing a 

system with i-vectors and a convolutional neural network (CNN) 

classifier. Using only the i-vector system, 80.8% can be obtained. 

Both systems make use of binaural multi-channel audio features. 

Using an NMF classifier enabled a result of 86.2%. A result of 

81.4% was obtained using a DNN system in combination with a 

large feature space. This is only slightly more than our 77.8%, 

however it comes with a much higher system complexity. One 

participant achieved 79% with a tuned CNN system, which gives 

slightly better accuracy than our internal system but has a higher 

complexity. 

 

5. CONCLUSIONS 

 

We presented a strong, but low-complexity baseline system for 

acoustic scene classification, which is also improved with a novel 

class of audio features. The goal of involving new features is to 

improve the existing ASC algorithms in terms of accuracy by 

keeping at the same time the computational speed and number of 

the additional features low. We showed that adding the proposed 

reverberation-based (DRD) features to the baseline ASC system, 

the accuracy is increased for both internal and public databases. 

Additionally, the computation of the DRD features is fast, as the 

algorithmic complexity is low. The number of features is small 

compared to the baseline feature sets, which can help to keep the 

complexity of the classifier low.  

With the internal database, the results in Section 4 show that 

MFCC features represent a very good baseline system, with an 

average accuracy of 87.7%. Adding Mel features results in an 

improvement, leading to up to 90.0%. This comes at the cost of a 

higher number of features, up to 236 instead of only 96 with 

MFCCs. Higher number of features means that the complexity for 

feature extraction is higher, as well as for classification. 

Furthermore, the memory size of the trained models will become 

larger. By adding only 30 DRD features to the MFCC baseline 2 

system, the accuracy is increased by 2% and it is comparable with 

a more complex system that includes 236.  

As for the public DCASE database it is shown again that 

adding the DRD features to the baseline MFCC features improves 

the accuracy of the classifier. The results show that the DRD 

features are complementary to the baseline feature set and can 

contribute to improving the accuracy of an ASC system. When 

compared to the other state-of-the-art solutions, it is concluded that 

most of the systems have a very high complexity, in terms of the 

employed algorithms, training time, model size, feature extraction, 

and classification. Furthermore, most of the top-performing 

challenge results are obtained by fusion. This means that different 

independent systems are built, and the final result is obtained from 

a combination of the independent system predictions. This adds a 

lot to the complexity.  

Future work will involve further development of the described 

ASC system in order to increase accuracy while keeping the low-

complexity of both the feature extractor and system classifier. The 

proposed DRD feature extractor is going to be broadened to the 

multichannel case, where we can exploit the spatial recording setup 

and binaural features of audio signals in order to get a more 

sophisticated measure of the acoustic properties in terms of 

reverberation. Another classifier types (GMM, DNN...) will be 

considered and a potential usage of DRD feature extractor for a 

signal pre-processing  in combination with them will be analyzed 

and explored.  
 

Table 2: ASC accuracy for the DCASE 2016 dataset, for various 

feature sets and state-of-the-art methods 

Origin Features 
Class-

ifier 

Compl-

exity 

Average 

accuracy 

Official 

Baseline 
MFCC GMM medium 72.5% 

Huawei 

Media 
GRC 

MFCC SVM low 75.9% 

Huawei 

Media 
GRC 

MFCC + DRD SVM low 77.8% 

University 

Marche, 
Ancona, 

Tampere 

University 
[24] 

spectrogram CNN high 79.0% 

University 
Passau, 

audEERI-

NG [25] 

spectral, 

cepstral, 

energy, 
voicing, 

auditory 

DNN, 
subspace 

learning, 

fusion 

very 

high 
81.4% 

Telecom 
ParisTech 

[26] 

spectrogram NMF high 86.2% 

J. Kepler 

University 
of Linz [27] 

i-vectors, 

binaural 

LDA, 

WCCN 
scoring 

high 80.8% 

J. Kepler 

University 
of Linz [27] 

i-vectors, 

binaural,  
spectrogram 

CNN and 

system 
fusion 

very 

high 
89.9% 
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