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ABSTRACT 

 

In this paper, a novel feature for noise robust sound event 

recognition is proposed. The proposed feature is obtained by 

a two-step procedure. First, a subspace bank is established 

via target event analysis in complex vector space. Then, by 

projecting observation vectors onto the subspace bank, noise 

effect can be reduced while generating discriminant 

characters originated from differing event subspaces. To 

demonstrate robustness of the proposed feature, experiments 

with several classifiers were conducted with varying SNR 

cases under four noisy environments. According to the 

experimental results, the proposed method has shown 

superior performance over prominent conventional methods. 

 

Index Terms— acoustic event classification, robust 

feature extraction, subspace learning, principal component 

analysis 

 

1. INTRODUCTION 

 

Non-linguistic sound contains rich information such as 

presence of humans, objects, or their activities. Acoustic 

Event Recognition (AER) is one of the research fields that 

exploits and extracts information from these sounds [1-3]. In 

earlier research, some features effective in speech/speaker 

recognition were used [1, 4]. These features were obtained 

by using human auditory based filter bank. However, general 

sounds such as breaking glass, explosion, or splashing water 

have different characteristics compared to vocal sound. 

Recently, event filter-banks were designed by expanding the 

acoustic spectrum beyond that of human speech [5-8]. They 

have shown that AER performance can be improved by 

designing filters that expanded its spectral range as well as 

their resolution beyond that required for human speech. 

The AER systems using the features based on the event 

filter-bank have shown good performance in a clean 

environment. However, in many applications, the AER has 

to operate effectively and reliably in noisy environment. 

Power Normalized Cepstral Coefficients (PNCCs) and 

Robust Compressive Gammachirp filter bank Cepstral 

Coefficients (RCGCCs) have been proposed for handling 

noise [9, 10]. However, these features adopt noise 

suppression strategies that do not handle low Signal to Noise 

Ratio (SNR) cases due to signal distortion. Although 

Spectrogram Image Features (SIF) has been proposed to 

establish noise robust AER systems [11], it fails to deal with 

signal variations, even in clean environments. In [6], an 

event filter-bank was designed by locating filters on 

relatively noise-free frequency bands. However, the method 

may be effective only for narrow band noise. In [7, 8], an 

event filter-bank was composed of several spectral bases that 

were obtained by applying a Non-negative Matrix 

Factorization (NMF) to spectrogram. The spectral bases 

function as templates for capturing a signal envelop from 

noisy observation like matched filter approach. However, 

signal envelopes in noisy environment may be differ from 

the templates due to phase difference, and this difference 

may pose difficulties in capturing signals. 

In this paper, a new feature named Subspace Projection 

Cepstral Coefficients (SPCCs) are proposed for achieving a 

noise robust AER. Under this approach, event signal is 

analyzed in complex vector space under an additive noise 

assumption and the vector space representing observations is 

decomposed into two orthogonal subspaces, signal and noise. 

When observations are projected into the signal subspace, 

the noise component is removed and discriminative event 

characteristics remain in the projection result.  

The remainder of this paper is organized as follows. 

Section 2 explains the proposed method with its motivation. 

Section 3 summarizes the experimental results of the 

proposed feature and its comparison to several other features. 

After a discussion on the results, conclusions are drawn in 

the final section. 

 

2. PROPOSED FEATURE 

 

2.1. Motivation 

 

By applying Discrete Fourier Transform (DFT) to a finite 

time sequence, the sequence is transformed to an 

observation vector lied on K-dimensional complex vector 

space. K is determined as a half of the number of DFT points, 

and the observation vector can be represented by a linear 

combination of basis vectors in the complex vector space. 

Note that the basis vector means frequency bin for 

761978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



representing frequency domain. Fig. 1 depicts several events 

in terms of normalized energy versus frequency. In case of 

an event such as whistle that has harmonic components, 

energy is confined in finite frequency bins. On the other 

hand, energy of an event without harmonic component is 

spread in wide frequency bands. As shown in the case of 

door or rain, however, their energy distributions are different 

according to frequency bin. From these observations, firstly, 

envelopes of an event can be represented by linear 

combination of Ri bases (Ri < K) where the event subspace is 

composed of these bases. Secondly, event subspaces as well 

as the bases that compose them vary depending on each 

event. The second consideration is one of the key factors for 

successful AER.  
 

2.2. Expected effect by projecting onto event subspace 

 

In a scenario that assumes uncorrelated-additive noise, the 

covariance matrix of observation can be represented by 

 

X S NC C C        (1) 

 

where CX, CS and CN are the covariance matrices of 

observation, event signal, and noise, respectively. Due to the 

influence of noise, CX may be a full-rank matrix although CS 

is singular matrix composed of a subspace approximated to a 

rank of Ri. According to the assumption, the noise 

component must be in a null space of CS, which implies that 

the two subspaces, signal and noise, are orthogonal to each 

other. Consequently, the noise effect can be reduced by 

projecting the observation onto the signal subspace.  
To perform AER, an observation is projected onto each 

event subspace. Since each event has a different subspace, 

this projection will construct a signal that differs according 

to event. Hence, the projection result is applicable as a 

discriminant character for AER. 

 

2.3. Establish subspace-bank 

 

For subspace learning, several algorithms using dimensional 

reduction approach have been introduced [12]. Among the 

methods, Principal Component Analysis (PCA) is a popular 

yet powerful method for establishing an event subspace [13]. 

As shown in Fig. 2, each event subspace is separately trained 

via PCA. The i
th

 event dataset is transformed into a K-

dimensional complex vector space by DFT. Then, PCA is 

conducted to produce Ri-eigenvectors selected by preserving 

90% of data energy to establish the i
th

 subspace Si. Note that 

the data energy is a summation of all eigenvalues. By 

repeating this procedure for every events, a subspace bank is 

generated. The subspace bank S∈ℂK×R
 is used in feature 

extraction procedure which is mentioned in the next section. 

Note that ℂ is a symbol of matrix whose element is complex 

number, and R is equal to sum of each subspace dimensions. 

In Fig. 2, C is the number of target events. 

 

2.4. SPCC extraction 

 

The proposed feature extraction procedure is shown in Fig 3. 

First, pre-emphasis is performed in order to compensate loss 

of high frequency component in input sequence x[n]. After 

framing, xp[n] is transformed into a complex vector space by 

Short Time Fourier Transform (STFT) to X=ℱ{xp[n]}∈ℂK×L
 

where n is time sequence index, xp is the result of framing 

and windowing, and L is the number of frames. 

X is projected onto each basis vector in the subspace 

bank S. Since the subspace bank is established by 

concatenating each event subspace, the projection result P∈ 

ℂR×L
 is composed of concatenated vectors projected onto all 

event subspaces for every frame. Next, for analyzing the P, 

 
Fig. 1. Normalized energy about four types of events: (a) Whistle, 

(b) Piano, (c) Door opening/closing, (d) Rain sound 

 
Fig. 2. Block diagram for training subspace bank 

 
Fig. 3. Block diagram for extracting SPCC 
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its elements are converted to M∈ℝR×L
 in real numbers by 

applying an absolute function. Note that the ℝ is a symbol of 

real matrix. To reduce magnitude deviation, the M is scaled 

by applying 3rd order root function. For decorrelation and 

compression, the proposed feature, SPCC, is finally obtained 

by applying Discrete Cosine Transform (DCT) to MS.  

 

3. EXPERIMENT 

 

3.1. Database 

 

Database as provided in Table 1 was collected in several 

locations by a portable recorder with an average length of 

1.5 seconds. For validation of noise robustness, four noisy 

environments (cafeteria, office, cross-road, and pub) were 

chosen from the ETSI background noise database [14]. In 

the experiments, the sound event database was mixed with 

the four types of noise at SNR in 20, 10, 5, and 0 dB by 

using the ADDNOISE library [15]. 

 

3.2. Experiment Setting 

 

3.2.1. Cross-validation Test 

For performance assessment, the database was categorized 

into 5 subsets and with a ratio of 4:1 between training and 

test sets. Mean average recognition rate for 13 target events 

and all possible combinations are provided in the 

recognition results. 

 

3.2.2. Conventional Methods 

In order to demonstrate effectivity of the proposed feature, 

prominent features, MFCC, PNCC [9], RCGCC [10], SIF 

[11], and Spectral Basis Vector - Cepstral Coefficient 

(SBVCC) [8] were considered as conventional methods. For 

conducting a Short Time Fourier Transform (STFT), frames 

were defined as 32 ms time sequences with an overlap with 

the next frame for 16 ms. DFT was conducted with 512-

points and the Hamming window. 

In the DCT step, 40 coefficients including delta 

coefficients were extracted to compose cepstral coefficient 

vectors of the considered cepstral features (e.g. MFCC, 

PNCC, RCGCC, and SBVCC). Then, the Gaussian Mixture 

Model (GMM) modelled by 32 mixture components was 

applied to these frame-based features [8]. 

In the case of SIF, parameters required for feature 

extraction were determined as described in [11]. 

Correspondingly, the classifier for SIF was configured to 

apply Support Vector Machine (SVM) using a quadratic 

polynomial kernel. Note that GMM is not appropriate for the 

SIF because its dimension (486-dimension) is too large to 

estimate GMM parameters. Additionally, Deep Belief 

Network (DBN) consisted of 3 hidden layers with each layer 

having the same number of nodes was also considered as the 

classifier. Experimentally, SIF performed best when the 

DBN structure is trained with 200-nodes for each layer. 

 

3.2.3. Proposed Method 

The proposed feature is a type of cepstral features and 

subsequently both parameters for feature extraction and 

feature dimension were same with those of cepstral features. 

In order to demonstrate effective of the SPCC, several 

classifiers were applied. Firstly, GMM and SVM trained 

with linear kernel were used for performance comparison to 

other prominent conventional features. Note that the input 

feature for SVM was obtained by averaging over all frames. 

Secondly, Deep Belief Network (DBN) was also applied to 

the proposed feature for comparing with the classifier based 

on deep learning. The DBN structure was same with one 

applied to SIF except the number of nodes. In this case, the 

number of nodes was set to 100, experimentally. The input 

vectors for DBN were extracted as follows. 80 features were 

extracted by calculating the mean and standard deviation for 

each of the 40 DCT coefficients over all frames [16]. 

 

3.3. Experiment Results 

 

Table 2 shows the experiment results when 32-mixture 

GMM is applied to several cepstral features including SPCC. 

In case of clean condition, all features performed well with a 

recognition rate of over 90%. By adding noise, all 

performances were drastically degraded in low SNR 

conditions. Due to the signal enhancement procedures in 

PNCC and RCGCC, their performances are shown to be 

better than MFCC. However, this holds only in sufficiently 

high SNR conditions. Otherwise, some problems such as 

signal distortion and residual noise may occur. Since 

SBVCC is extracted based on energy detectors of each event, 

performance can be improved in low SNR. In SPCC, it is 

clearly observed that SPCC retains higher recognition rate 

than that of other considered methods even in low SNR 

cases. 

Table 3 summarizes the results obtained by applying 

SVM or DBN to SIF and SPCC. Since the SIF is composed 

of statistics on each partial region of spectrogram, the 

feature does not cover the case when the signal is in different 

region. To overcome this case, the signal interval in 

spectrogram must be perfectly found. However, this is 

impractical in real noisy condition. For this reason, average 

recognition rate of SIF in clean condition is the worst among 

TABLE 1 

THE ACOUSTIC EVENT DATABASE AND ITS SIZE 

Event # of data Event # of data 

Bark 318 Male scream 149 

Bell 227 Female scream 207 

Door op./cl. 346 Breaking glass 263 

Piano 162 Siren 267 

Pop music 288 Tire skid 239 

Rain 283 Whistle 299 

Water pouring 248   
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all considered features although its degradation according to 

SNR is less than other features. Otherwise, in cases both 

SVM and DBN, SPCC generally outperforms SIF in clean 

as well as noisy condition. 

 

4. DISCUSSION 

 

As previously mentioned, main idea of the SPCC is to 

reduce noise effect and extract discriminant character by 

projection. By comparing to other results, these effects can 

be identified. From overall results, SPCC has the best 

performance. On recognition performance using GMM, the 

performance of SPCC is improved on the average by 

17.21%, 9.26%, 11.01%, and 8.17% compared to MFCC, 

PNCC, RCGCC, and SBVCC, respectively. Also, its 

performance is improved on the average by 15.65% and 

5.50% compared to SIF in recognition using SVM and DBN, 

respectively. 

For classification of the SPCC, GMM shows better 

performance on average than other classifiers. In clean 

condition, SVM shows the best performance among the 

considered classifiers. However, it has the largest 

degradation in 0 dB cases. In the aspect of classification 

criteria, all frames have same weight when classification is 

performed with SVM. Practically, importance of each frame 

may be different from each other. Although DBN also has 

the same issue for classification, its performance is better 

than SVM in 0 dB cases because input feature for DBN 

includes not only frame-mean but also frame-variance. In 

particular, DBN shows the best performance in 0 dB pub 

condition. On the other hand, each frame has different 

weight in terms of likelihood in classification using GMM. 

Based on maximum likelihood criteria, GMM usually shows 

noise robust performance without increasing feature 

dimension. 

 

5. CONCLUSIONS 

 

In this paper, SPCC is proposed as a noise robust AER 

feature. SPCC can be obtained by projecting the observation 

onto an event subspace-bank. By means of the projection 

procedure, noise components can be suppressed while 

extracting discriminant character generated by differing 

event subspaces. For performance assessment, prominent 

conventional features such as MFCC, PNCC, RCGCC, SIF 

and SBVCC were considered. And several classifiers such 

as GMM, SVM, and DBN were considered and the 

experiments were conducted with varying SNR cases under 

four noisy environments such as cafeteria, office, pub, and 

cross-road. In reference to the experimental results, the 

proposed feature, SPCC-GMM, has shown to outperform the 

other conventional features. 

TABLE 2 

EXPERIMENT USING 32 MIXTURE GAUSSIAN MIXTURE MODEL RESULTS [%] 

SNR 0 dB 5 dB 10 dB 20 dB Clean SNR 0 dB 5 dB 10 dB 20 dB Clean 

ca
fe

te
ri

a
 

MFCC 45.42 57.95 70.60 87.76 91.59 

P
u

b
 

MFCC 33.13 45.78 61.88 80.58 91.59 

PNCC 57.01 72.08 82.99 90.30 91.40 PNCC 39.82 58.43 69.77 88.74 91.40 

RCGCC 52.40 66.37 79.66 90.31 91.62 RCGCC 30.49 53.89 69.16 87.90 91.62  

SBVCC 59.63 71.74 83.21 90.82 91.82 SBVCC 39.75 53.61 70.98 90.21 91.82 

SPCC 80.31 80.31 88.07 93.34 94.95 SPCC 48.33 72.92 86.18 93.58 94.95 

o
ff

ic
e 

MFCC 46.50 58.48 70.68 89.08 91.59 

cr
o

ss
-r

o
a

d
 

MFCC 47.02 64.36 78.59 89.75 91.59 

PNCC 47.50 65.47 79.10 89.75 91.40 PNCC 78.38 86.78 89.88 91.16 91.40 

RCGCC 54.97 68.46 81.55 91.04 91.62 RCGCC 65.67 79.90 88.20 91.35 91.62  

SBVCC 59.98 74.47 85.22 91.56 91.82 SBVCC 71.65 83.42 89.76 91.46 91.82 

SPCC 76.26 85.30 90.96 94.22 94.95 SPCC 88.01 92.24 93.76 94.46 94.95 

 

 
TABLE 3 

EXPERIMENT USING SUPPORT VECTOR MACHINE OR DEEP BELIEF NETWORK RESULTS [%] 

SNR 0 dB 5 dB 10 dB 20 dB Clean SNR 0 dB 5 dB 10 dB 20 dB Clean 

S
IF

-S
V

M
 Cafeteria 51.31 63.01 68.76 70.71 70.45 

S
IF

-D
B

N
 Cafeteria 63.75 75.50 80.63 82.60 82.82 

Office 58.83 67.75 70.28 70.80 70.45 Office 70.75 78.48 81.58 82.81 82.82 

Pub 42.39 60.90 69.19 70.59 70.45 Pub 51.04 70.89 79.47 82.75 82.82 

Cross-road 70.04 70.78 70.50 70.37 70.45 Cross-road 80.86 82.05 82.57 82.85 82.82 

S
P

C
C

-S
V

M
 Cafeteria 51.05 68.35 85.45 97.75 99.11 

S
P

C
C

-D
B

N
 Cafeteria 70.02 77.74 84.54 91.09 93.27 

Office 55.30 74.09 90.72 98.39 99.11 Office 71.85 80.66 86.06 91.79 93.27 

Pub 41.20 52.37 71.15 95.77 99.11 Pub 58.49 70.26 78.79 87.86 93.27 

Cross-road 77.01 90.18 96.77 98.96 99.11 Cross-road 80.22 85.38 89.13 92.99 93.27 
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