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ABSTRACT

Several speech processing and audio data-mining applications
rely on a description of the acoustic environment as a feature
vector for classification. The discriminative properties of the
feature domain play a crucial role in the effectiveness of these
methods. In this work, we consider three environment iden-
tification tasks and the task of acoustic model selection for
speech recognition. A set of acoustic parameters and Ma-
chine Learning algorithms for feature selection are used and
an analysis is performed on the resulting feature domains for
each task. In our experiments, a classification accuracy of
100% is achieved for the majority of tasks and the Word Er-
ror Rate is reduced by 20.73 percentage points for Automatic
Speech Recognition when using the resulting domains. Ex-
perimental results indicate a significant dissimilarity in the
parameter choices for the composition of the domains, which
highlights the importance of the feature selection process for
individual applications.

Index Terms— Feature Selection, Machine Learning,
Environment Identification, Reverberant speech recognition.

1. INTRODUCTION

Reverberation is observed in rooms due to the reflection of
sound waves as they meet surfaces such as objects or walls.
It can be perceived as prolonging of the original sound due
to temporal smearing and in most real-life cases as an audi-
ble change in timbre. In the case of music, reverberation is to
some extent desirable since it provides warmth to the sound
[1]. In the case of speech, it can degrade intelligibility [2] and
also affects the performance of Automatic Speech Recogni-
tion (ASR) systems [3].

Complete knowledge of the reverberation effect is given
by the Acoustic Impulse Response (AIR) between the source
and the receiver [4]. AIRs however typically involve thou-
sands of taps, which prohibits their direct use for several tasks
such as classification due to computational and memory con-
straints associated with high dimensionality. The motivation
for this work is to find low-dimensional descriptors for the
acoustic environment that are discriminative with regards to
the reverberation effect. The primary aim is, by considering
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a set of tasks, to provide insight into the discriminative prop-
erties of acoustic parameters that can be extracted from re-
verberant speech and used to form a low-dimensional feature
domain.

Considering the range of potential applications, we are
interested in parameters that can be extracted both from the
AIR and/or can also be estimated from reverberant speech.
Using knowledge about the choices of such parameter in the
literature we investigate the use of Mel-frequency Cepstral
Coefficients (MFCC) [5, 6], Reverberation Time (RT) [7] and
Direct-to-Reverberant Ratio (DRR) which is related to clar-
ity [8, 9, 2]. Despite the effectiveness of the parameter sets
listed above, there is a lack of a comparative study of their dis-
criminative properties when considering a collection of tasks.
This study will allow us to identify whether a set of param-
eters can be considered as task-independently discriminative,
or whether a task specific domain should be used for future
applications.

Parameter values estimated from the received signals in-
clude uncertainty due to an estimation error. Therefore, in or-
der to provide a clear insight into their discriminative powers,
parameters extracted from AIRs are used in this work. They
are evaluated as feature domain dimensions using feature se-
lection methods for classification. A Classification and Re-
gression Tree (CART) and a Support Vector Machine (SVM)
classifier are used for a set of tasks involving environment
identification and ASR acoustic model selection. Classifica-
tion accuracy and Word Error Rate (WER) for ASR are used
as metrics for the suitability of the resulting feature domains.

The structure of the remainder of this paper is as follows:
Section 2 provides information about the formulation of the
problem and the methods used for its solution, Section 3 de-
scribes the experimental setup used, Section 4 offers a dis-
cussion on the experimental results and the conclusion is pro-
vided in Section 5.

2. METHOD

2.1. Signal Model

For time index, n, the reverberant speech signal x(n) can
be modeled as a convolution process between the anechoic
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speech signal s(n) and the AIR from the sound source to

the microphone h(l) for I = 0,1,...,L — 1. Additive
noise is denoted as v(n). In vector notation, we define
s =[5(0),...,s(N —1)]¥, h=[h(0),...,h(L—1)]T and

v=[v(0),...,v(N+L~-1)]T. Given vector h, the con-
volution matrix H of dimensions N + L —1 x N can be
formed as

- h(0) 0 0 T
R(1)  h(0) 0
H=|hrL-1) .. : 0 @)
0 h(L-1) :
L6 0 h(L_1).

and the reverberant speech signal as

x=Hs+v. 2)

2.2. Acoustic Features

Considering the case of no additive noise, the AIR is a de-
scription of a stationary acoustic environment. We form the
rows of matrix Y by stacking M direct-path-aligned AIRs,
h,, = [h(0), ..., A(Ly, — 1)], m€ {1,...,M}. We define

the feature extraction operators f(Y), where k € {1,..., K}.

When applied to Y, it transforms its rows to Dy, elements,
each one corresponding to an acoustic parameter. With D
acoustic parameters under consideration and considering all
possible parameter combinations indicates that ' = 2. The
transformation can be summarized as

fr : REm — RPw 3)

Yi = fu(Y), “

where the dimensions of the matrix Y, are M x Dy,.

As feature dimensions, the following acoustic parameters
have been evaluated that are linked to different aspects of
reverberation: full-band RT [2], frequency-dependent RT [2],
full-band DRR [2], frequency-dependent DRR [2] and MFCC
[10]. The parameters are respectively denoted as 7, T(we),
Af, Awy) and p(we), where &, ¢ and ¢ are sub-band indices
and w indicates the angular frequency of their geometric cen-
ter. We extract the RT using [11] and following from the
results of [7] we consider 1/ 3 octave-bands for w > 150 Qf—fr,
where f, is the sampling frequency in Hz. We extract the
DRR also in !/3 octave-bands for the same frequency re-
gion, leading to § € {1,...,16} and ¢ € {1,...,16}. We
extract 25 MFCC spanning the range 100 Hz and 8 kHz,
hence ¢ € {1,...,25}. In total D = 59 acoustic parameters
are evaluated. For clarity and readability, in the following
sections the sub-band indices &, 1 and ( are indicated as
subscripts of the parameter symbols.
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2.3. Feature Selection

Feature selection is performed for each considered task as a
wrapper around supervised training of classifiers, the method
for which is discussed in this section. Each row of Y}, is
a feature vector representation of the acoustic environment
which is described by the corresponding row of Y. Therefore
for supervised training, M rows need to be labeled to indicate
their ground-truth value relative to the task. The vector of

ground-truth values can be formed as ¢ = [c1, ..., cpr]”. The
classifier g; is defined as the function
¢ =9 (Yg). 6))

With ¢ being an estimate of c, the misclassification rate E}, ;
is defined as the proportion of misclassified feature vectors
for classifier ¢ operating in feature domain k.

Thus the objective is to identify the best pair (4, k) by con-
sidering K candidate acoustic parameter combinations (fea-
ture domains) and [ classifiers using

argmin Fy ;, (6)
ki

forie{l,...,J}andk € {1,..., K}.

In the experiments in this paper we consider I = 2 classi-
fiers, a SVM with a Gaussian kernel [12] and a CART [13, 14]
although this case be straightforwardly extended. For each
one of the two cases, the minimization search along the k di-
mension of (6) is performed differently. This operation is ef-
fectively the feature selection process for each classifier. For
the case of SVM, Backwards Sequential Selection (BSS) [15]
is used and for the case of CART the feature selection is per-
formed by the tree growing algorithm. The number of candi-
date feature domains in this work is K = 2 = 259, Rather
than exhaustively searching the vast solution space in terms of
K, the two feature selection methods used in this work rely
on certain assumptions to simplify the problem. For BSS, the
stopping criterion chosen empirically for our experiments is
set as the reduction of the feature dimensions to 15 param-
eters. For CART, the split criterion used is Gini’s diversity
index [16].

3. EXPERIMENTAL SETUP

Four experiments are described in this section with the objec-
tive being to identify the most discriminative feature domain
for each of the tasks studied. The four tasks are:

1. Room-type identification, for which practical appli-
cations involve context recognition and environment
identification for data-mining [17, 6].

2. Room identification for forensic applications [7, 18, 5].

3. Classification of reverberant environments with regards
to quantized receiver positions. [19, 20, 21].



4. Acoustic model selection for ASR [8].

For brevity in the following sections we refer to the tasks
using indices 1,2,3 and 4, following the above order.

3.1. Evaluation Method

Cross-validation [12] is used for the evaluation of the mis-
classification rate of (6). The cross-validation grouping is
performed in terms of rooms for Tasks 1 and 4, in terms of
receiver position for Task 2 and a leave-one-out approach is
used for Task 3.

3.2. Environment Identification

The objective of Tasks 1 to 3 is to identify properties of re-
verberant speech inputs that relate to the enclosure. For these
experiments, AIRs provided by the Acoustic Characterization
of Environments (ACE) Challenge [22] are used. AIRs for 7
rooms are included. For the case of Task 1, the ACE database
allows us to perform classification of types office, meeting
room and lecture theater. For the case of Task 2, 2 offices, 2
meetings rooms, 2 lecture theaters and a building lobby are
considered. For the case of Task 3, 70 microphone locations
in a total of 7 rooms are considered, with the objective being
to identify the room and position.

3.3. Acoustic Model Classification for ASR

Given a reverberant speech input for ASR, the objective of
this task is to minimize the WER by choosing the appropri-
ate acoustic model [8]. The experiment is performed using
AIRs that have been recorded using the crucifix microphone
array for the ACE Challenge. Therefore, two 5-channel AIR
recordings for 7 rooms are available. All AIR channels are
used for the corruption of test data and the center channel of
each AIR is used for the training of the acoustic models. This
gives in total 14 acoustic models and 70 ASR conditions. The
training process for this experiment requires an extra step as
the ground-truth value vector c (discussed in Section 2) is not
readily available. To determine ¢, ASR must be performed on
all 70 conditions using all available models. We restrict the
choice of acoustic models in the sense that for each condition,
models trained using AIRs from the same room are excluded.
Therefore, 12 possible models are available for each one of
the 70 conditions. The vector c is formed by the models that
provide the lowest WER for each one. Performing this step
turns the problem in the same form as the remaining tasks
considered.

For the training of acoustic models and running the ex-
periment, the Kaldi Toolkit' and the TIMIT? speech database
were used.

Thttp://kaldi-asr.org
2The s5 example for TIMIT was used as provided with the Kaldi Toolkit.
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4. RESULTS

4.1. Feature Selection Results

The results of the experiments are shown in Fig. 1, which
illustrates the choice of parameters both for the CART and
SVM classifiers. The cross-validation accuracy for each one
is shown as part of the legend. For the CART, in Fig. 1a we
are able to visualize the level of importance of each parame-
ter to the designed classifier as the Predictor Importance (PI)
(also referred to as Attribute Importance) [14]. For the case
of SVM with BSS, the selected features are shown as binary
values on the polar plot of Fig. 1b, with a different radius for
each task and the circle segmented to indicate the parameter
sets. CART proved to be the best performing classifier for
Task 1 with a cross-validation accuracy of 100%. The SVM
gave the best results for Tasks 2, 3 and 4 with cross-validation
accuracies respectively of 100%, 97.86% and 100%. Using
(6) allows us to identify the feature domain © for each task as
shown in Fig. lc, with the domain subscript referring to the
task index. The order of the acoustic parameters in this plot
has been arranged to highlight the overlap and the differences
between the choices for the acoustic parameters for each task.

4.2. Discussion

Concerning CART, it can be observed from Fig. 1a that the
choices of features are sparser for broader environment iden-
tification categories. Room type identification focuses on RT
parameters and specifically on the extreme bands. This is at-
tributed to the fact that rooms of the same type are likely to
share similar shapes and dimensions. Under certain assump-
tions [23], the shape and dimensions of the enclosure deter-
mine properties of the room modes which are less overlap-
ping in the lowest band [23]. The RT at the highest band
can reveal attributes related to frequency dependent absorp-
tions. With regards to room identification, significant addi-
tions to the PI involve further RT bands, while the extreme
bands still remain highly important. The contribution of ad-
ditional bands is to discriminate between rooms of the same
type. Room position identification uses parameters from all
three sets, with RT being able to provide information about
the room itself, DRR being an indicator of the distance of the
speaker to the receiver and MFCC being able to provide infor-
mation about effects such as coloration [2]. The results show
that all these indicators are substantially used to identify the
speaker’s room and position. Acoustic model selection simi-
larly involves diverse parameters.

The analysis of the results for the SVM shown in Fig.
1b should be viewed under a different light compared to the
CART results. Unlike a CART, a SVM assumes that the data
are separable by hyperplanes in the D, dimensional space. A
Gaussian kernel is used to transform the space and increase
its dimensionality [12], however the fundamental difference
between the two classifiers is still present. Therefore the di-
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Fig. 1: Features selected and resulting feature domains.

verse parameters that are chosen for all four tasks are chosen
as good predictors that also match the expected structure for
class separability.

For the case of cross-validating the classifier for ASR
acoustic model selection, in order to demonstrate the ef-
fectiveness of such an approach, a further experiment is
performed. WER figures are compared for the case of per-
forming ASR using a single acoustic model trained using
anechoic speech and for the case of choosing between mul-
tiple models using the designed SVM classifier. The results
show that using a single model yields a WER of 57.73% and
using the ©4-domain SVM classifier with multiple models
the WER reduces to 37.00%, a reduction of 20.73 percentage
points.

An important observation is the dissimilarity in the pa-
rameter choices for each task. The significant difference in
the domains for room-type identification and ASR acoustic
model selection indicates that the usefulness of the descrip-
tor of the acoustic environment is relative to the task. In this
distinct example, all but one of the parameters that provided
excellent cross-validation accuracy for the former task are dis-
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regarded for the latter. The resulting domain still provides
a cross-validation accuracy of 100% for the corresponding
task. This highlights the usefulness of targeted parameter-
extraction as it would not only improve the computational and
memory efficiency of relevant applications but would also not
compromise performance.

5. CONCLUSION

This paper presented an analysis of the suitability of a set
of acoustic parameters as feature dimensions of discrimina-
tive domains for reverberant acoustic environments. Environ-
ment identification and the task of acoustic model selection
for ASR were considered. Using feature selection methods
for classification led to the formation of a feature domain for
each task studied. The results of this work provided clear
insight for future applications in terms of which acoustic pa-
rameters are inherently relevant to each one.
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