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ABSTRACT

We have devised a method for estimating, from a single frame of au-
dio frequency spectra, a shape parameter of multivariate generalized
Gaussian distribution which has variance represented by an all-pole
model and no covariance. Based on powered all-pole spectrum es-
timation (PAPSE), which is an extension of linear prediction, the
proposed method simultaneously estimates the shape parameter and
the maximum-likelihood variance, allowing more accurate represen-
tation of the probability density functions of the spectra. This paper
shows an integration of the estimation into an audio codec for an ex-
ample of its application, which resulted in the enhancement of the
objective and subjective reconstruction quality. Since this estima-
tion method provides us with simple parameters which reflect some
acoustic features of signals, the method may also be useful in other
audio signal processing problems.

Index Terms— Generalized Gaussian distribution, linear pre-
diction, feature extraction, audio compression

1. INTRODUCTION

In general, one of the main approaches for signal processing prob-
lems is to apply statistical models to the probability density func-
tions (PDFs) of signals and estimate the parameters in these models
according to the observation.

Linear prediction (LP) is a widely-used method for this approach
in audio signal processing, and LP-based methods have been in-
vented for many applications: for example, automatic speech recog-
nition [1], audio retrieval [2], speech dereverberation [3], and au-
dio coding [4]. In the sense of statistical modeling, LP can be in-
terpreted as estimating the maximum-likelihood variance of multi-
variate Gaussian distribution (with no covariance) to which the fre-
quency spectra of the observed signal are assumed to belong. Under
this interpretation, the variance is modeled by an all-pole filter and
its values also represent an envelope of the observed spectra.

Indeed the assumption of Gaussian in LP makes its model and
algorithm simple, but there are many cases where it shows higher
likelihood to assume other distributions. Therefore, for instance, in
transform coded excitation (TCX) [5–7], an audio coding scheme
which compresses signals in frequency domain, the input spectra
are assumed to be Laplacian-distributed when the bits are allo-
cated even though its variance is still estimated by LP. Our previous
work [8] pointed out that, in the cases like TCX, LP does not give
the maximum-likelihood variance for non-Gaussian distributions
and derived a simple method of optimal estimation for those cases
called powered all-pole spectrum estimation (PAPSE).

PAPSE allows us to estimate the maximum-likelihood variance
for generalized Gaussian distribution (GGD), which has a parameter

to control its shape (hereinafter we call it ”shape parameter”) to rep-
resent variant distributions including Gaussian and Laplacian. The
shape parameter of GGD is related to the sparseness of the obser-
vation [3], and its applications have been studied not only for audio
but also for image and video [9–13]. The work in [8] showed that
PAPSE, with appropriate shape parameter, enables us to represent
observed spectra with higher likelihood compared to LP in the same
order, i.e., in the same degree of freedom. Moreover, the appropri-
ate shape parameter changed momentarily depending on some kind
of sparseness of the spectra and was expected to reflect the acoustic
features of the observation. However, the smart method to choose
the appropriate shape parameter from the observation is still unclear
since it requires simultaneous estimation, from a single frame, of the
shape parameter and the variance represented by PAPSE for GGD of
this shape.

In this paper, LP and PAPSE are first breifly reviewed in the con-
text of maximum-likelihood estimation. Then, we introduce a simple
method for approximately estimating both the maximum-likelihood
shape parameter and variance of GGD based on the PAPSE scheme.
Additionally, we show an example of its application to a TCX-based
codec.

2. REPRESENTING VARIANCE OF MULTIVARIATE
DISTRIBUTION BY SPECTRAL ENVELOPE

2.1. Linear prediction

LP models the PDF of observed frequency spectra{Xk}N−1
k=0 by

Gaussian with its variance represented by all-pole spectra, in other
words, spectral envelope{Hk}N−1

k=0 :
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wherek, N , {an}pn=1 andσ2 respectively indicate frequency bin,
frame length, LP coefficients and the power of prediction error. The
maximum-likelihood estimates of the model parameters, i.e., LP co-
efficients{an}pn=1 are given by solving the following problem:

min
{an}

N−1∑
k=0

DIS(H
2
k || |Xk|2) (3)

whereDIS(x||y) = y/x − ln(y/x) − 1 is called Itakura-Saito (IS)
divergence. This minimization problem is known to be, for the sake
of the all-pole properties, equivalent to minimizing prediction error
in the time domain and can be solved efficiently by Levinson-Durbin
algorithm, which is reviewed in [8].
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2.2. Powered all-pole spectrum estimation

PAPSE was intended to represent the maximum-likelihood estimate
of variance for GGD with a given shape parameterα [8]:

fGG(|Xk| ||Hk,α, α) =
A(α)

Hk,α
exp

(
−
∣∣∣∣B(α)

Xk

Hk,α
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whereA, B are constants written by gamma functionΓ(x) =∫∞
0

e−ttx−1dt as

A(α) =
αB(α)

2Γ(1/α)
, B(α) =

√
Γ(3/α)
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Slightly modifying the representation of the spectral envelope from
LP as
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the minimization problem for estimating the maximum-likelihood
{an}pn=1 becomes as

min
{an}

N−1∑
k=0

DIS(H
2
k || |Xk|α), (7)

which is written in IS divergence and can be solved just as LP us-
ing Levinson-Durbin algorithm regardingα-th-powered spectra as
power spectra.

3. SHAPE PARAMETER ESTIMATION WITH PAPSE

As stated above, we can obtain, for a given shape parameterα,
the maximum-likelihood variance of GGD. Here, our concern is
how to find smartly, among various shape parameters in the PAPSE
scheme, the best parameter to represent the observation for each
frame, namely the frame-by-frame maximum-likelihoodα.

Although there are some previous works on estimating the
shape parameter, simply applying them to the PAPSE scheme leads
to inaccurate results: Methods such as moment-based method and
maximum-likelihood estimation in [14] assume uniform variance
over the observation, which conflicts with the PAPSE model; Meth-
ods for multivariate GGD as in [15] require several observations
belonging to the same distribution, which is hard to collect for audio
signals since their distributions are varying momentarily.

Therefore, we present here an iterative algorithm for simulta-
neously estimating the shape parameter and the variance of GGD
based on the method in [14]. This algorithm is composed of two
steps: PAPSE step and shape parameter estimation step. At first, we
set an initial value forα and iteratively perform the following steps
for the observed spectra{Xk}N−1

k=0 :

1. (PAPSE step) Estimate the maximum-likelihood variance
{Hk,α}N−1

k=0 by PAPSE of the presentα;

2. (Shape parameter estimation step) Since the normalized spec-
tra {Yk ≡ Xk/Hk,α}N−1

k=0 has approximately uniform vari-
ance, estimate the shape parameter from{Yk}N−1

k=0 by the
method in [14] and updateα.

Our preliminary test showed that the maximum-likelihood estima-
tion in [14] often results in negativeαs, which causes computational
instability. Thus, we hereinafter use the moment-based method to

approximate maximum-likelihood estimate ofα in the shape param-
eter estimation step. In principle, the moment-based method esti-
matesα by solving

F (α) ≡ Γ(2/α)√
Γ(1/α)Γ(3/α)

=
m1√
m2

(8)

wherem1 andm2 are respectively the empirical first and second
moments of{Yk}N−1

k=0 . Actually, it is much easier to chooseα from
its candidates{αi}Ii=1 which makesF (αi) closest tom1/

√
m2

since we cannot explicitly calculate the inverse ofF (α).
If the method used in the shape parameter estimation step gives

maximum-likelihood estimate ofα, the algorithm proposed above
makes the likelihood monotonically increase by the iteration, which
proves its convergence. However, because of the approximation of
shape parameter estimation by the moment-based method, we cannot
prove the convergence or optimality of this algorithm.

4. APPLICATION TO AUDIO CODEC

One of the examples for applications of the proposed estimation
method is TCX, a high-compression audio coding scheme whose
fundamental framework is adopted in newly-established 3GPP en-
hanced voice services (EVS) standard [16–18]. TCX first represents
the input signals into real-valued spectra by modified discrete cosine
transform (MDCT) and then quantizes the spectra by scalar quan-
tizer. Secondly, TCX allocates bits to quantized spectra by range-
coder-based arithmetic coding [4] according to their log-likelihood,
and therefore higher likelihood enables more efficient compression.
The step size of the quantization is decided by a bisection search in
order to meet the target bit rate so that efficient compression tends to
attain high sound quality in reconstructed signals.

The calculation of the log-likelihood in [6] is done by using
Laplacian distribution with its variance given by LP, of which per-
formance was improved by using GGD ofα = 0.7 with its vari-
ance given by PAPSE [8]. Here, we can apply the idea of the shape
parameter estimation: estimating frame-by-frameα which makes
higher likelihood, using different distributions in the arithmetic cod-
ing according to the estimatedα, and transmittingα to the decoder
by allocating bits to it.

5. EVALUATION OF ESTIMATION METHOD

5.1. Likelihood comparison

At first, to check the characteristics of the proposed method, its ef-
fect on likelihood, initial dependence, convergence, required number
of iteration, we estimated shape parameters for some speech and au-
dio signals and calculated their likelihood. For the shape parameter
estimation step in the proposed method, we prepared for theα can-
didatesα = 0.1 toα = 3 in increments of0.1.

Figure 1 plots the average log-likelihood. The likelihood was
calculated as relative log-likelihood in bits compared by its counter-
part of LP:

L =
1

NM

∑
k,l

log2
fGG(|Xk,l| ||Hk,α∗

l
,l)

fG(|Xk,l| ||Hk,l)
(9)

wherel, M , andα∗
l respectively stands for the frame number, the

total frames, and the estimatedα for thel-th frame.Hk,α∗
l
,l andHk,l

were given by 16-th-order PAPSE and 16-th-order LP, respectively.
It can be seen that there is some convergence and it depends on the
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Fig. 1. Relative average log-likelihood compared to LP (bits/sample)
by each iteration and initial values. Black dotted horizontal line
shows the limit found by an exhaustive search. 17232 frames of
16-kHz audio signals (about 6 minutes) were tested.

Table 1. Relative average log-likelihood compared to LP
(bits/sample). 17232 frames of 16-kHz audio signals (about 6 min-
utes) were tested.

Without PAPSE With PAPSE
Simple moment-
based estimation

Fixed
(α = 0.7)

Proposed
estimation

Exhaustive
search

-60.1111 27.9153 37.4118 38.1298

initial values. Practically, it seems sufficient to use a large value for
the initialα and the results of the first iteration.

Table 1 compares other estimation methods with the proposed
method (the result of the first iteration with initial valueα = 2). The
difference between the proposed method and the exhaustive search
was less than 1 bit, and changing the shape parameter frame by frame
showed higher likelihood compared to the fixed PAPSE, which cal-
culated the log-likelihood with a constantα for every frames. Simple
moment-based method, which estimatedα using the moment-based
method without normalizing the spectra by its varianceHk,α, seems
to have given inaccurate estimates resulting in the decrease of the
likelihood from LP.

5.2. Transition of shape parameters

Next we compared the transition of the estimated shape parameters.
The test signal was composed of four seconds each of a popular mu-
sic (synthesizer), a classic music (violin), a jazz music (trumpet),
a male speech (clean), and the same male speech with pink noise
(signal-to-noise ratio was 10 dB), which was used in [8]. Figure 2
depicts the result. The shape parameters estimated by the proposed
method roughly tracked the optimal shape parameters found by the
exhaustive search, showing the correspondence between the shape
parameter and some acoustic features. On the other hand, the sim-
ple moment-based method constantly estimated as aroundα = 0.5,
which revealed to be inaccurate by the previous experiment.

6. EVALUATION OF AUDIO CODEC

6.1. Codec settings

To evaluate the proposed method in the audio codec, we prepared a
TCX-based codec which is the same one reviewed in [8]. At 16.4
kbps, we used two settings for the comparison:

1. (Baseline TCX) Using GGD ofα = 0.7 for arithmetic coding
with its variance represented by fixed PAPSE of 16-th order,
of which coefficients{an}16n=1 were vector quantized in the
form of LSP as in [19] with 20 bits;

2. (Adaptive PAPSE) Adding shape parameter estimation part
before PAPSE. The arithmetic coding used different GGD
for each frame based on the estimatedα. The variance was
also represented by 16-th-order PAPSE, of which coefficients
were quantized by the method stated above with different
codebooks for eachα. Theα was represented by 1 bit as
mentioned below.

This baseline TCX is the low-delay audio codec which was created
in [8] and showed comparable subjective quality to 3GPP extended
adaptive multirate wide-band (AMR-WB+) [20] at same bit rate with
significantly lower coding delay. For the estimated shape parameter,
we used the results from the first iteration of the proposed method
with initial valueα = 1. The quantization of the estimated shape pa-
rameterα was designed heuristically by trial and error, with the op-
timalα expected to change smoothly in audio signals: Representing
the quantized shape parameter inτ -th frameα̂τ with fourth-order
moving average by 1 bit, in other words, selectingβ̂τ which satisfies

α̂τ = µ−1(β̂τ +0.7β̂τ−1 +0.6β̂τ−2 +0.5β̂τ−3 +0.4β̂τ−4) (10)

whereµ(α) indicates theµ-law algorithm of ITU-T G. 711 [21].
The values for̂βτ was defined to makêατ be in[0.5 1].

The other bit allocations were evenly set: 8 bits for the step size,
3 bits for the noise-fill level, and rest of the bits for arithmetic coding
(see [8,22] for details).

6.2. Objective evaluation

The objective sound quality of the reconstructed signals, graded
from −4 to 0 points, was calculated by McGill University’s AFsp
PQevalAudio [23]. Since TCX is mainly expected to compress au-
dio signals, we evaluated the sound quality using musical data: Fifty
items randomly selected from the four databases in the RWC Music
Database [24]: Ten items each from the Classical Music, Jazz Music
and Music Genre Databases; Twenty items from the Popular Music
Database, ten without vocals and ten with vocals. Ten seconds of
signals were extracted from each items and down-sampled into 16
kHz.

The relative scores of the TCX with adaptive PAPSE compared
to the baseline TCX are shown in Fig. 3. The shape parameter es-
timation made the average objective quality higher, giving a signif-
icant difference in the total score. As for the complexity, the ad-
ditional computational costs for applying the shape parameter esti-
mation in this condition were about0.6 weighted million operations
per second (WMOPS [25]), about2 % of the total costs of the TCX-
based coder.

6.3. Subjective evaluation

To evaluate whether the difference in objective quality shown by the
previous experiment is actually audible, an informal subjective eval-
uation was held. Five audio items in the RWC Music Database, ten
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Fig. 2. Spectrogram and its shape parameters estimated for every five frames. Simple moment-based method for conventional method (black
chained line), proposed method (red solid line), and exhaustive search (blue slashed line).

Fig. 3. Database-wise relative objective difference grades by PEAQ
compared to the baseline TCX. Average and 95 % confidence inter-
vals. Asterisk indicates there was a significant difference at 5 % in a
paired t-test.

seconds each down-sampled into 16 kHz, were respectively coded
in the two conditions, presented to seven participants with the refer-
ences and 3.5-kHz band-limited anchors, and graded from 0 to 100
points, as is done in ITU-R BS.1534-1 Multiple Stimuli with Hid-
den Reference and Anchor (MUSHRA) [26]. The test items were
labeled as follows: ”Cello”, for a cello piece from the Classical Mu-
sic Database, ”Synthesizer”, for a synthesizer piece from the Mu-
sic Genre Database, ”Piano”, for a piano piece from the Jazz Mu-
sic Database, ”Guitar”, for a Guitar piece from the Popular Music
Database, and ”Vocal”, for a female vocal piece from the Popular
Music Database.

Figure 4 describes the item-wise relative scores of the TCX with
adaptive PAPSE compared to the baseline TCX. It can be seen that
the average subjective quality were enhanced by the shape parame-
ter estimation with a significant difference in the total score, which

Fig. 4. Item-wise relative subjective scores by MUSHRA compared
to the baseline TCX. Average and 95 % confidence intervals. As-
terisk indicates there was a significant difference at 5 % in a paired
t-test.

resembles the results of the objective evaluation.

7. CONCLUSION

We presented a simple way to estimate both the shape parameter and
variance of generalized Gaussian distribution using powered all-pole
spectrum estimation (PAPSE) and the moment-based shape parame-
ter estimation. This estimation scheme enables us to represent more
precisely, in the sense of likelihood, the distributions of audio fre-
quency spectra, which have nonuniform variance over the frequen-
cies. Despite that the proposed estimation is just an approximation
for maximum-likelihood estimation, the results of the experiments
proved that the estimates gave near log-likelihood to the optimal
ones found by the exhaustive search and that they actually enhanced
the objective and subjective quality of an audio coder. The param-
eters brought by this estimation may be useful in other tasks like
automatic speech recognition, which would be a future challenge.
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