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ABSTRACT

In this paper, a blind bandwidth extension algorithm for mu-
sic signals has been proposed. This method applies the K-
means algorithm to firstly cluster audio data in the feature
space, and constructs multiple envelope predictors for each
cluster accordingly using Support Vector Regression (SVR).
A set of well-established audio features for Music Informa-
tion Retrieval (MIR) has been used to characterize the audio
content. The resulting system is applied to a variety of music
signals without any side information provided. The subjec-
tive listening test results show that this method can improve
the perceptual quality successfully, but the minor artifacts still
leave room for future improvements.

Index Terms— Bandwidth extension, K-means, Support
Vector Regression

1. INTRODUCTION

With the increasing popularity of mobile devices (i.e., smart-
phones, tablets) and online music streaming services (i.e., Ap-
ple Music, Pandora, Spotify...etc), the capability of provid-
ing high quality audio content with minimum data require-
ment becomes more important. To ensure a fluent user ex-
perience, the audio content could be heavily compressed and
lose its high frequency (HF) information during the transmis-
sion. This compression process may cause degradation to the
perceptual quality of the content. An audio Bandwidth Exten-
sion (BWE) method can be used to address this problem and
restore the HF information to improve the perceptual quality
[1]. In general, audio bandwidth extension can be categorized
into two types of approaches: 1) Non-blind 2) Blind.

In the first type of approaches (Non-blind), the signal is
reconstructed at the decoder with side information provided.
This type of approach can generate high quality results since
more information is available. However, it also increases the
data requirement and might not be applicable in some use
cases. The most well-known method in this category is Spec-
tral Band Replication (SBR) [2, 3]. SBR is a technique that
has been used in the existing audio codecs such as MPEG-4

∗The first author performed the work while at Dolby Laboratories

High-Efficiency Advanced Audio Coding (HE-AAC). It can
improve the efficiency of the audio coder at low-bit rate by
encapsulating the HF content and recreating it based on the
transmitted low frequency (LF) signal with side information.
Being a simple and efficient algorithm, SBR still introduces
some artifacts to the signals [4]. One of the most obvious is-
sues is the mismatch in the harmonic structures caused by the
process of the band replication to create the missing HF con-
tent. To improve the patching algorithm, a sinusoidal model-
ing based method was proposed to generate the missing tonal
components in SBR [5]. Another approach is to use a phase
vocoder to create the HF content by pitch shifting the LF part
[6]. The other approaches, such as offset adjustment between
the replicated spectrum [7] or a better inverse filtering pro-
cess [8], have also been proposed to improve the patching
algorithm in SBR.

In the second approach (Blind), the signal is reconstructed
at the decoder without availability of side information. This
type of approach mainly focuses on general improvement in-
stead of faithful reconstruction. One approach is to use a
wave-rectifier to generate the HF content, and use different
filters to shape the resulting spectrum [9]. This approach has
a lower model complexity and does not require a training pro-
cess. However, the filter design becomes crucial and could
be difficult to optimize. The other approaches, such as lin-
ear predictive extrapolation [10] and chaotic prediction the-
ory [11], also predict the missing values without any train-
ing process. Recently, machine learning based approaches
gain more popularity. For example, envelope estimation us-
ing Gaussian Mixture Model (GMM) [12], Hidden Markov
Model (HMM) [13] and Neural Network [14] has been used.
These approaches generally work well when the training data
is sufficient, but the model complexity could be higher than
traditional methods.

For methods focusing on blind BWE of speech signals,
Linear Prediction Coefficients (LPC) is commonly used to ex-
tract the spectral envelope and excitation from the speech. A
codebook can then be used to map the envelope or excita-
tion from narrowband to wideband [15]. Other approaches,
such as linear mapping [16], GMM [17] and HMM [18], have
been proposed to predict the wide-band spectral envelopes.
Combining the extended envelope and excitation, the band-
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width extended speech can be re-synthesized at the decoder.
However, comparing with speech signals, music has a more
complicated excitation signal and spectral shape. Therefore,
an LPC based method might not be directly applicable.

In this paper, we focus on blind BWE methods for mu-
sic signals. More specifically, we propose a method to extend
the bandwidth of a given music signal from 7 kHz to 22.05
kHz . In the field of MIR, it is shown that audio features are
useful for characterizing the audio content [19]. Inspired by
the audio content analysis approaches, we propose to apply
an unsupervised clustering algorithm followed by a machine
learning based approach to build HF envelope predictors for
signals with similar characteristics. The rest of the paper is
structured as follows: In Sec. 2, the algorithmic details of
the proposed method are described. In Sec. 3, the datasets,
metrics, and results from a listening test are discussed. Fi-
nally, the conclusions and future directions of are presented
in Sec. 4.

2. METHOD

2.1. Algorithm Description

The flowchart of the proposed method is shown in Fig. 1.
It consists of two phases: training and testing. In the train-
ing phase, the audio signals are firstly converted into time-
frequency representations using Complex Quadrature Mirror
Filter (CQMF) transformation as specified in [2]. The CQMF
filter-bank decomposes the signal into 64 complex valued
sub-bands using blocks of 64 samples. Next, the spectral
envelopes of each block are extracted and separated into HF
and LF parts with a cutoff frequency of 7 kHz . A set of com-
monly used audio features are extracted from the LF signals,
and these features are further clustered using K-means algo-
rithm. For each cluster, a set of M HF envelope predictors
are trained using Support Vector Regression (SVR) with the
audio features and the actual HF spectral envelopes as targets;
M equals to the number of coefficients representing the HF
spectral envelopes. Finally, the resulting K by M envelope
predictors and K centroids are stored and sent to the decoder.

In the testing phase, the audio signals are converted into
time-frequency representations with the same CQMF trans-
formation. The LF part of the signals (cutoff frequency = 7
kHz ) are then separated, followed by a similar feature ex-
traction process as in the training phase. For each block, the
best set of envelope predictors is selected by calculating the
distances between the current feature vector and the K cen-
troids. These predictors are used to generate the predicted
HF spectral envelopes. The HF complex CQMF coefficients
are created by replicating the values from LF part and adjust-
ing the spectral shape to match the predicted HF spectral en-
velopes. Finally, the resulting CQMF representation, which
combines the original LF part and the generated HF part, is
converted back to the time-domain using an inverse CQMF

transformation.

2.1.1. K-means algorithm

The basic assumption of the proposed method is that audio
signals with similar characteristics (such as genre) could be
more likely to have similar spectral shapes. To explore the
underlying simliarity of the audio content, one of the most
popular unsupervised clustering algorithm, K-means [20], is
used. The algorithm can be summarized as follows:

1 Initialize K centroids by randomly selecting K sam-
ples from the data pool.

2 Classify every sample with a class label of 1 to K based
on their distances to the K centroids.

3 Compute the new K centroids by taking the average of
each class.

4 Update the centroids

5 Repeat step 2 to 4 until convergence.

In a preliminary experiment of the proposed method, K =
20 to 40 was tested, and K = 20 was selected for achiev-
ing the best result in terms of the objective measurement (see
Sec. 3.2). The maximum iteration is set to 500. However, the
algorithm usually converges after 200 to 300 iterations. Fi-
nally, the distance measure used in our K-means implementa-
tion is Euclidean distance.

2.1.2. Support Vector Regression (SVR)

Support Vector Machine (SVM) [21] is one of the state of the
art machine learning algorithms that has been proven success-
ful for various classification tasks, and Support Vector Re-
gression (SVR) is the variant of SVM for regression tasks.
In general, SVM is a linear classifier that defines an optimal
hyperplane to separate the data in the feature space, and the
optimization problem is solved by finding the support vectors
that can maximize the margins nearby the decision boundary.
Comparing with the other classification and regression algo-
rithms, SVM has the flexibility of defining the tolerance of
error within the margins, leading toward a more generic so-
lution. For implementation, a MATLAB version of the SVM
library LIBSVM [22] is used.

In this paper, the basic idea is to predict the HF spectral
shape based on the audio features extracted from the LF sig-
nal. Since the predicting values are continuous, a regression
version of the SVM (nu-SVR) is used as the predictor. To in-
troduce non-linearity into the model, a Radial Basis Function
(RBF) kernel is used. The rest of the parameters follow the
default settings in LIBSVM.
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Fig. 1. Overview of the proposed blind bandwidth extension method

Table 1. List of the extracted audio features
Domain Name Dimensionality
Spectral Centroid 1
Spectral Flatness 1
Spectral Skewness 1
Spectral Spread 1
Spectral Flux 1
Spectral MFCC 13
Spectral Tonal Power Ratio 1

Temporal RMS 1
Temporal Zero Crossing Rate 1
Temporal ACF 10

2.2. Feature Extraction

The features used in this paper are listed in Table 1. These
features are commonly used in audio content analysis. More
implementation details of the selected features can be found
in [23] and [1]. In this paper, the spectral envelopes are cal-
culated by taking the absolute value of the complex QMF
coefficients. The spectral features, as listed in Table 1, are
computed from the spectral envelopes of the LF part of the
input signal, and the temporal features are computed from the
waveform of the same LF signal with non-overlapping blocks.
The block size for calculating the temporal features is chosen
to synchronize with the block size of the CQMF decompo-
sition. Finally, the features are normalized using a standard
z-score normalization process.

3. EXPERIMENTS

3.1. Datasets

Two datasets are used for training and testing purposes in this
paper. The training set is a large collection of stereo signals
with a variety of contents such as music, instrumental sounds,
and singing voices. The entire folder contains 791 wav files.
The length of the recordings varies from 30 seconds to 42
minutes, however, most of the tracks are within the range of

1 to 6 minutes. The testing set is a small collection of stereo
signals, which includes 35 songs of different genres such as
Classical, Pop, Jazz, Country and Rock. This collection is
suitable for testing the system for its diversity. The length of
each song is approximately 1 to 6 minutes.

As a pre-processing step, all of the audio tracks are down-
mixed to mono and resampled to a sampling rate of 44.1 kHz.
To fasten the training process, only a short excerpt of 10 sec-
onds from each track is used.

3.2. Metrics

The objective measurement used in this paper is the average
spectral distortion as described in [16]. The equation is shown
in Equation 1, in which S is the target spectral envelope (in
dB), Ŝ is the predicted spectral envelope (in dB), N is the to-
tal number of blocks and W is the total number of frequency
bins. The spectral envelopes are calculated as discribed in
Sect. 2.2. In general, a lower spectral distortion D implies a
higher similarity between the predicted and the actual spec-
tral envelopes. This metric provides a reasonable quantitative
measurement of the quality of the resulting signal. However,
it is sensitive to small fluctuation and might not necessarily
reflect the perceptual quality.

D =

√√√√√ 1

N

N∑
n=1

 W∑
f=1

(S(f, n)− Ŝ(f, n))2

W

 (1)

3.3. Listening Test

A MUltiple Stimuli with Hidden Reference and Anchor
(MUSHRA) test was conducted to subjectively evaluate the
proposed method. 10 songs from the testing set have been
chosen to create 10 sets of stimuli. Each set contains 4 dif-
ferent versions of the 20 second excerpt of a song. The first
version is the processed audio file using the proposed method.
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Fig. 2. Results of the MUSHRA test

Table 2. Averaged spectral distortion of the selected tracks
Track No. 1 2 3 4 5
D (dB) 5.53 5.89 10.01 7.26 6.02
Track No. 6 7 8 9 10
D (dB) 9.94 12.98 6.33 6.24 10.36

The second version is the anchor file, which is the low-passed
audio file with a cutoff frequency equal to 7 kHz. The third
version is processed audio files using a commercially avail-
able blind bandwidth extension system. The fourth version
is the hidden reference, which is identical as the original in-
put file with a bandwidth equal to 22.05 kHz. There were 7
subjects that participated in the listening test under the same
configuration of a controlled listening environment. The sub-
jects were instructed to grade the perceptual quality of the
audio files with a scale between 0 and 100. A higher score
indicates a higher perceptual quality. The results of the listen-
ing test and objective measurement are shown in Fig. 2 and
Table 2.

3.4. Results and Discussions

From the results of the listening test, it can be observed that
the proposed method has the highest mean scores on all tracks
compared with the other versions. This result shows that
the proposed method can successfully improve the perceptual
quality of the low-passed signal. The objective measurement
of the selected tracks is not highly correlated with the listen-
ing test scores. However, for certain items, it still reflects the
trend of the perceptual quality. For example, the proposed
method on track No. 2 and No. 6 has the highest and low-
est mean score respectively, and their corresponding averaged
spectral distortion are 5.89 dB and 9.94 dB.

In general, the tracks featuring strong human voices, such
as track No. 1 and 5, have larger standard deviations on the
scores of the proposed method, whereas the tracks focusing

on strong background music, such as track No. 8 and 10, have
smaller standard deviations. The reason could be that the arti-
facts in the first group of tracks are more noticeable, while in
the second group they are more subtle. These artifacts might
be caused by the mismatch in the harmonic structure after the
spectral replication. Additionally, since the training set con-
tains more music contents than singing voices, the envelope
predictors might not be well-trained for the singing voices and
could generate poor estimations.

Track No. 2 and 4 have the largest margins between the
mean scores of the proposed method and the low-passed one.
Both of these tracks feature strong instrumental sounds with
almost no human voices. This could imply that the artifacts
introduced by the proposed method are less pronounced on
instrumental sounds. However, a more specific testing set is
needed to verify this observation.

In certain tracks, a strong clicking sounds can be ob-
served. The cause of the artifacts might be the non-overlapping
blocks used in the system, which may create discontinuity and
introduce fluctuations to the predicted envelopes.

4. CONCLUSION

In this paper, an audio content analysis inspired blind BWE
method has been proposed. Based on the extracted audio fea-
tures, the proposed method applies the unsupervised cluster-
ing technique to group the training data in the feature space,
and trains different models separately to better predict the un-
known spectral envelopes. The evaluation results show that
the proposed method can improve the perceptual quality of
the low-passed music signals successfully, and it is especially
effective for instrumental sounds.

The future directions are: first, there are some existing ar-
tifacts reported by the subjects after the listening test, such
as clicking, high pitch spikes and short distortions. Since
these artifacts are most likely to be caused by transients, a sig-
nal adaptive method based on a transient detection algorithm
could be developed to address these issues. Additionally, a
signal adaptive noise blending process could be implemented
to potentially improve the perceptual quality by masking the
artifacts. Second, a larger training set with more emphasis on
singing voices could be beneficial to train a better model for
improving the quality of singing voices. Last but not least,
a better patching algorithm can significantly reduce the arti-
facts by generating a smoother artificial HF content. A signal
adaptive method that switches between simple replication and
harmonic extension might provide a more flexible scheme to
process different types of music signals.
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