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ABSTRACT
Musical noise is a recurrent issue that appears in spectral techniques
for denoising or blind source separation. Due to localised errors
of estimation, isolated peaks may appear in the processed spectro-
grams, resulting in annoying tonal sounds after synthesis known as
“musical noise”. In this paper, we propose a method to assess the
amount of musical noise in an audio signal, by characterising the
impact of these artificial isolated peaks on the processed sound. It
turns out that because of the constraints between STFT coefficients,
the isolated peaks are described as time-frequency “spots” in the
spectrogram of the processed audio signal. The quantification of
these “spots”, achieved through the adaptation of a method for local-
isation of significant STFT regions, allows for an evaluation of the
amount of musical noise. We believe that this will pave the way to an
objective measure and a better understanding of this phenomenon.

Index Terms— Musical noise, spectrogram, time-frequency
analysis, Delaunay triangulation, denoising

1. INTRODUCTION

Noise reduction techniques have been extensively studied over
decades, with the objective of attenuating the background envi-
ronmental noise while preserving the underlying signal. Many
techniques rely on the attenuation of short-time spectral coefficients
of spectrogram, such as the squared magnitudes of Short-Time
Fourier Transform (STFT), to remove the noise from the signal.
These techniques have nevertheless one major disadvantage: Due to
the tonal components that emerge in the denoised audio signal, they
generate a residual noise, usually called “musical noise” [1], that is
unpleasing for the listener [2]. There does not appear to be a formal
definition of musical noise, although it is usually associated with the
presence of isolated power spectral components in spectrograms [3].
These peaks often result from the poor estimation of time-frequency
masks, whether it is in a denoising context or for source separation.
As described in [1], peaks and valleys naturally arise in STFT areas
containing white noise at random frequencies. After subtraction of
the estimation of noise, the peaks remain and the narrowest ones are
perceived as time-varying tones known as musical noise.

In the literature, a wide collection of methods have been pro-
posed to reduce musical noise, by improving the estimation of time-
frequency masks [4, 5, 6, 7, 8], post-processing techniques [2, 9,
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10, 11], or in the context of sparse representations [12, 13]. The
evaluation of the effectiveness is in most cases exclusively based on
listening tests assessing the overall quality of denoised signals. The
influence of musical noise is nevertheless not precisely measured, as
other effects of different natures, such as distortion or interferences,
may also appear. Some researches have then introduced objective
measures of musical noise, by capturing the presence of isolated
spectrogram peaks. In [3, 14], the hypothesis is that the isolated
peaks impact the probability density function of the power spectral
coefficients. They introduce a measure to evaluate the amount of
musical noise in a speech signal after denoising by spectral sub-
traction [3] and Wiener filtering [14], by comparing the processed
signals with the change of kurtosis. In [15], the proposed objective
measure involves several features, such as the distinctiveness and the
non-harmonicity of isolated peaks as well as the similarity between
consecutive frames. The complexity of each step makes this measure
difficult to interpret and to implement for audio analysis.

In this contribution, we outline a related approach to assess
the musical noise in already-processed audio signals. The novelty
lies in the detection of the isolated peaks after synthesis of the
processed signals. The musical noise is then measured regardless
of the spectral technique that generated it, unlike [3, 14]. A bet-
ter understanding of how isolated power spectral components are
incorporated in the synthesised signal is given: indeed, due to the
constraints that bind the coefficients of the time-frequency plane,
these peaks are not concentrated on one unique time-frequency co-
efficient, but rather spread in time and in frequency after synthesis
to form time-frequency “spots”. A characterisation of the shape
of these “spots” is given, and a method to localise them in the
spectrogram is introduced, based on the work introduced in [16].
Estimating these regions gives then access to the estimation of the
underlying musical noise.

This paper is organised as follows. In Section 2, a characteri-
sation of musical noise is introduced, by first recalling some STFT
properties and then deriving expected shape for the isolated peaks.
In Section 3, after briefly discussing the method introduced in [16]
to detect relevant areas in the spectrogram, the main elements of its
implementation for the detection of musical noise in audio spectro-
grams are given. An evaluation of the relevance of this approach is
finally given in Section 4.

2. TIME-FREQUENCY CHARACTERISATION OF
MUSICAL NOISE

2.1. Consistent representation of isolated peaks

Spectral representations such as spectrograms are efficient and sim-
ple tools for analysing and processing audio signals [18]. The STFT
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(a) Spectral subtraction [17]
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(b) Time-frequency block thresholding [7]

Fig. 1: Log-spectrograms of the output of two denoising techniques
applied on a music excerpt [7].

of a real and discrete signal x is defined as:

F(n,m) = STFT(x) =
N−1∑
k=0

x(k +Rm)w(k)e−i2π
kn
N (1)

where n is the frequency index, m is the frame index, w is the anal-
ysis window of length N and R is the hop size. The corresponding
spectrogram simply follows as

S(n,m) = |F(n,m)|2. (2)

Conversely, the inversion of the STFT is given by

x̃(l) =
∑
m

s(l −mR)
∑
n

F(n,m)ei2πn
l−mR
N , (3)

where s is the synthesis window. The STFT representation F has
internal constraints that bind the time-frequency coefficients, that are
expressed by the following reproducing identity [19]

F = STFT[STFT−1(F)]. (4)

After filtering, the resulting spectrogram is generally not con-
sistent, that is to say, the reproducing identity is not verified any-
more. When isolated peaks appear in the processed spectrograms,
the synthesis into a new audio signal x̃ causes the spread of this
highly-localised energy both in time and frequency, leading to visi-
ble “spots” in the spectrogram of x̃.

An analytical description of this spot is derived, by considering
a STFT representation F0 with a unique isolated peak at the coordi-
nates (α, β):

F0(n,m) =

{
1 + 0i if n = α and m = β
0 + 0i otherwise. (5)

The synthesis of this spectrogram gives the signal x̃[l] using (3)

x̃[l] = s[l − βR]ei2πα
l−βR
N . (6)

The time-frequency representation F̂0 of x̃ is obtained by using (1)

F̂0(n,m) =
∣∣∣N−1∑
k=0

e−i2π
k(n−α)−R(m−β)

N w(k)s[k −R(β −m)]
∣∣∣2.
(7)

The study of (7) shows that the energy of the spectrogram of a sig-
nal, obtained after synthesis of a spectrogram with a unique isolated
peak, is localised in a specific region of the time-frequency domain.
This region has boundaries which depend on the usual parameters
of the STFT, such as the synthesis and the analysis windows and the
hop size. We will consider in the following that these parameters are
known, i.e., the shape of the “spots” is known.

2.2. Illustration

To highlight the connection between isolated peaks and musical
noise, an illustration is given here on signals with different levels
of musical noise. In [7], two denoising techniques are applied on
a music except, and the authors assess the amount of musical noise
generated by these methods through extensive listening tests. To
assess the amount of musical noise in these signals, it is necessary
to consider time-frequency “spots” as explained previously.

The spectrogram of the signal obtained after spectral subtrac-
tion [17], with a subjective score that indicates that it contains a high
amount of musical noise, is displayed in Figure 1a. It shows more
spots in the spectrogram, compared to the spectrogram of the sig-
nal obtained after time-frequency block thresholding [7], displayed
in Figure 1b, which has higher quality score. These observations
suggest that the number of “spots” could be a good indicator of the
perceived amount of musical noise in an audio signal.

Based in this hypothesis, which is consistent with the observa-
tions given in previous works [1, 10, 8, 3, 15], we develop in the next
section a methodology to extract from a spectrogram the regions that
correspond to the shape of the expected “spots”, in order to quantify
them.

3. DOMAIN LOCALISATION IN AUDIO SPECTROGRAMS

3.1. Identification using the zeros of the STFT

Recently, a new method has been proposed in [16] to capture the
high-energy regions in a spectrogram. Considering signals com-
posed of modulated components, this method allows for the seg-
mentation of their spectrograms and the unmixing and the extraction
of the different modes. The identification of these high-energy ar-
eas, called domains, is based on the zero coefficients, which have
a distribution that is shown to be a signature of the underlying sig-
nal. In concrete terms, the zeros are shown to be homogeneously
distributed in the low-energy areas, while the high-energy areas do
not exhibit zeros, except at their borders. From this observation, the
rationale is that when the distance between two zeros is low, the cor-
responding area is identified as being of low-energy, and conversely.
The Delaunay triangulation [20] is then applied to connect all ze-
ros: triangles with edges with a length, i.e., the distance between
the corresponding zeros, longer than the expected length of edges of
non-significant areas, are identified and merged to construct the sig-
nificant time-frequency domains. Identification of time-frequency
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Algorithm 1 Localisation of Time-Frequency domains

Input: A spectrogram of an audio signal
Output: A list of simplices in the time-frequency plane

Step 1: Detect small local minima of the spectrogram
Step 2: Perform Delaunay triangulation [20] over local minima
Step 3: Select triangles with at least one edge longer than a thresh-
old
Step 4: Group adjacent triangles in domains

components using this approach has been proven to be of interest in
tasks such as mode extraction [21] or filtering [16].

3.2. Implementation to the detection of musical noise

Unlike signals considered in [16, 21], audio signals are too com-
plex to be easily described as the combination of simple modulated
components, and then do not exhibit isolated areas of interest. One
notable exception is precisely the spots that appear in audio signals
with a lot of musical noise, as described in Section 2. Consider-
ing that these spots are nearly isolated in the spectrogram, and that
their shape is known, it becomes possible to use the methodology
described in [16] to locate time-frequency spots corresponding to
musical noise in an audio spectrogram. These choices are discussed
in the following and are summarised in Algorithm 1.

Step 1 Due to the complexity of audio spectrograms, there is in prac-
tice no zero values in spectrograms but rather local minima,
as highlighted by the implementation proposed in [16]. When
dealing with signals with a few modulated components, it
is observed that the minima are always located in the low-
energy regions and there is then no need to control their value.
In the case of audio spectrograms, it may occur that local
minima appear in high-energy areas, as visible for instance
in the log-spectrograms in Figure 1. To prevent this problem,
a maximal value τ0 is set in such a way zeros only appear in
low-energy regions.

Step 3 After Delaunay triangulation in Step 2, all local minima are
connected into triangles. When the triangles are located in
low-energy areas, the length of their edges is lower than an
empirically chosen value [16]. Conversely, triangles in high-
energy areas have longer edges, identified as outliers. In our
context, it has been observed that areas of interest are mostly
defined by vertical edges, i.e., edges which have a dominant
frequency contribution. Outlier edges are then identified by
their lengths along the frequency axis. The threshold is cho-
sen by using the expected size of “spots” obtained using (7).

Step 4 The retained triangles are grouped into disjoint areas, called
domains. First, the edges which are not shared by two re-
tained triangles constitute the contours of the domains, and
vertices are browsed by following the edges until a domain is
closed. Domains are then selected according to the expected
duration and the frequency band size of “spots” correspond-
ing to musical noise given by (7).

This methodology gives access to the regions of the spectrogram
that are considered as responsible for the musical noise. By measur-
ing different statistics, such as the energy of these peaks or their
distribution in time and in frequency, they may lead to define an ob-
jective measure of the tonal sounds audible in the audio signal. In
the following, this measure is defined by simply taking the number
of detected “spots”.
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(a) p = 10−4
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(b) p = 10−3
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(c) p = 10−2

Fig. 2: Log-spectrogram of a music signal after adding artificial
peaks and synthesis, for different value of p.

4. PRELIMINARY EXPERIMENTS

We introduce in this section two methods to generate isolated peaks
in the spectrogram of an audio signal. We discuss the number of
detected spots, with respect to the expected number of generated
isolated peaks, and the resulting musical noise assessed through in-
formal listening. All the experiments are performed on the first two
seconds of the audio signal dev1 bearlin roads snip 85 99 mix from
the SISEC 11 dataset [22]. The STFT is calculated in the detection
method using a hamming window of size 128 with a hop size of 1.
The synthesis in both generation methods is performed using a sine
window of size 256 with a hop size of 128.

4.1. Addition of artificial isolated peaks

Based on the hypothesis that musical noise is generated by isolated
spectral components, random isolated peaks are artificially added in
the spectrogram, as introduced in [23] to generate “artificial noise”.
From a spectrogram S, the resulting spectrogram is expressed by
S̃ = S + µM where M is a Bernoulli matrix with the same shape
as S of parameter p, and µ is a scalar value such that the gener-
ated peaks are audible in the synthesised signals as a tonal sound.
In this generator, the value of p controls the number of isolated
peaks, and then the amount of musical noise. Figure 2 shows the
log-spectrograms obtained after adding artificial isolated peaks, for
p ∈

{
10−4, 10−3, 10−2

}
. When the value of p is small, the num-

ber of spots is directly linked with the number of isolated peaks.
These peaks are clearly audible in the resulting audio signals as tonal
sounds, revealing the presence of musical noise. Above a certain
value of p, the peaks are not isolated anymore and tend to merge
together, leading to an audio signal sounding like white noise.

Figure 3 shows the log-spectrogram of a musical excerpt with
musical noise and the outputs of Algorithm 1. In Figure 3a, the
retained triangulation is displayed, highlighting the fact that edges
are mostly vertical in high-energy areas. Domains obtained after
Step 4, displayed in Figure 3b, are only present in time-frequency
spots after selection of the domain with the expected shape.
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(a) Triangulation obtained after Step 3
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(b) Selected domains after Step 4

Fig. 3: Log-spectrograms of a musical excerpt with musical noise
and the output of Algorithm 1 after Steps 3 and 4.

Figure 4 shows the average number of domains in the spectro-
gram and the corresponding standard deviation for p varying from
10−4 to 10−1, and averaged over 10 repetitions. The number of
detected “spots” increases when p is comprised between 10−4 and
10−2. When p becomes higher, the number of domains decreases
as the spots tend to merge together to form larger regions, no more
associated with musical noise.

4.2. Orthogonal Matching Pursuit denoising

Sparse representations have been efficiently used for audio denois-
ing [24, 25, 12, 13]. Orthogonal Matching Pursuit (OMP) [26, 27] is
a well-studied greedy algorithm that can iteratively estimate a sparse
approximation of a signal from noisy observations. The algorithm it-
eratively reduces the residual error, until an approximation error ε is
reached. ε is usually chosen close to the noise level (ε = kσ2), hoping
that no noise component will be captured during the process. This
parameter acts like a threshold between good signal reconstruction
and noise residual: low threshold leads to poor signal reconstruction,
while a high threshold leads to isolated noise components being cap-
tured, hence producing musical noise.

Figure 5 shows the number of domains in the spectrogram of
the resulting signal after OMP of a signal with additive white noise
(SNR = 10dB), for different value of the approximation error ε =
kσ2, and averaged over 10 repetitions of input noisy signal. As for
the previous experiment, these results confirm that the method intro-
duced in Section 3 localises spots corresponding to isolated peaks.

In these preliminary experiments, two methods have been in-
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Fig. 4: Average number of domains (or spots) and standard deviation
according to the value of p, for 10 draws of random isolated peaks.
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Fig. 5: Average number of domains (or spots) and standard deviation
according to the value of OMP parameter ε = kσ2, for 10 draws of
additive white noise in the input signals (SNR = 10dB).

troduced to generate isolated peaks, that have been related to the
amount of musical noise. The results show that the proposed ap-
proach is able to capture these spots, and return a measure that cor-
responds to the observations.

5. CONCLUSION

The presence of musical noise is a significant factor to consider when
assessing the effectiveness of spectral techniques such as denoising.
The overall quality of processed audio signals is highly affected by
generated spectral artefacts causing annoying tonal sounds. In this
paper, a novel approach to evaluate musical noise in an audio sig-
nal, regardless of the spectral technique, is introduced, based on the
localisation of time-frequency spots, causing musical noise. Prelim-
inary results have highlighted the ability of the proposed method to
detect these time-frequency spots, and therefore to assess the per-
ceived amount of musical noise, even if they need to be confirmed
with formal listening tests. Further experiments, including a wider
range of spectral techniques known to generate annoying musical
noise and a comparison with the state-of-the-art objective measures
of musical noise, would be also interesting.

More generally speaking, this study proposes new insights in the
understanding of musical noise, which is little known and mainly
measured in related works through subjective quality assessment.
The extraction of the regions of the spectrogram may be used to
describe more finely the sound texture of musical noise, through for
instance the energy of corresponding spots, or their distribution over
the time-frequency plane. It then allows for a better understanding
of musical noise, which is an essential step to the development of
new strategies for the reduction of the annoying effect it causes.
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